
The Use of Block Chain
Technology in Different

Application Domains
Bachelor Project in Software Development

The IT University of Copenhagen

Jacob Stenum Czepluch - jstc@itu.dk
Nikolaj Zangenberg Lollike - nlol@itu.dk
Simon Oliver Malone - soma@itu.dk

20th May 2015

Abstract

In this paper, the exciting possibilities that block chain technology offers in
regards to decentralised trust-free systems are investigated. More specifically
this includes research of how block chain technology can advantageously be
utilised in different domains, from finance to more general societal applica-
tions.

On the basis of a small trust-based coffee shop, a proof of concept system
has been developed as a base point for an evaluation of the strengths and
weaknesses of the block chain technology. Clearly both are present, but they
are much dependent on which cases the technology is applied to. In the
example of a coffee shop, the low maintenance, built in security and ease of
implementation are factors that speak for the utilisation. On the other hand
the inconvenience of currency conversion and transaction time are drawbacks.
On a more general scale the security and trust-freeness of the technology
is definitely features that allow for it to be applied in a broad spectrum
of applications. However, scalability, costs and fluctuating currencies are
hindrances.

It is argued that block chain technology has the potential to restore trust
in the banking sector by introducing a level of transparency.

The technology is still young and suffers from teething troubles, but it
is argued that as it matures it will have a great impact in many areas of
application.

Contents

1 Introduction 1
1.1 Research question . 2
1.2 Contents of This Paper . 2
1.3 Cryptographic Economic Systems 3
1.4 Why Ethereum? . 3

2 Methodology 4
2.1 Design Science Research . 4
2.2 Phases of DSR . 4
2.3 Reflections on Research . 6

3 Background 7
3.1 Bitcoin: the First DAO . 7
3.2 Block Chains in Finance . 8
3.3 Re-Decentralising the Internet 9
3.4 From the Internet of Things to the Economy of Things 9
3.5 Future Research . 10

4 Account for Technology 11
4.1 Ethereum . 11
4.2 Vision . 12
4.3 Block Chain Technology . 12

4.3.1 Mining . 14
4.3.2 Consensus . 14

4.4 Technology of Ethereum . 15

I

4.4.1 Smart contracts . 15
4.4.2 Transactions . 16
4.4.3 Ether and gas . 17
4.4.4 Messages . 17
4.4.5 Mining ether . 18
4.4.6 Ethereum Virtual Machine (EVM) 18
4.4.7 Block time . 19

5 Proof of Concept 20
5.1 The Concept . 20

5.1.1 Current system . 20
5.1.2 The issue of trust . 21

5.2 Implementation . 21
5.2.1 Smart contract . 21
5.2.2 JavaScript client . 22

5.3 Tour of the System . 23
5.3.1 The welcome screen . 24
5.3.2 Purchasing a punch card 26
5.3.3 Purchasing coffee . 28

5.4 Modular Implementation . 29
5.4.1 The contracts . 30

6 Analysis of Implementation 32
6.1 Testing . 32

6.1.1 Solidity contract . 32
6.1.2 Black-box testing . 33
6.1.3 JavaScript client . 33

6.2 Trust and Security . 34
6.3 Limitations . 34

6.3.1 Block time . 34
6.3.2 Extendability . 35
6.3.3 Improvements . 35

6.4 Modular Implementation . 36

II

7 Discussion 39
7.1 Why Decentralise? . 39
7.2 The Greater Picture . 40
7.3 Economic Systems . 41
7.4 Challenging the Block Chain 41

7.4.1 The size factor . 41
7.4.2 Coping with stress . 43
7.4.3 Waiting disrupts the flow 44
7.4.4 Fees: hidden or blatant 45
7.4.5 Fluctuating currencies 47
7.4.6 Keeping everything safe 48
7.4.7 Converting currencies 48

8 Reflections 50
8.1 Electronic Voting . 50
8.2 Digitalised Rights . 52
8.3 Ripple . 53

8.3.1 What is Ripple? . 53
8.3.2 Ripple and block chain technology 55

8.4 The Opaque Banking Sector 55
8.4.1 Adaptation . 57

9 Conclusion 59

References 62

Terms and abbreviations 68

A Implementation code 72
A.1 Non-modular implementation 72

A.1.1 Smart Contracts . 72
A.1.2 HTML JavaScript Client 76

A.2 Modular implementation . 85

B Test Results 101

III

List of Figures

2.1 Cognitive processes used in Design Science Research as sug-
gested by Vaishnavi and Kuechler[52]. 5

4.1 Simplified version of how Bitcoin’s block chain connects blocks 13

5.1 AlethZero – the browser used to view our client and display
the state of the network. 24

5.2 The GUI of the HTML/JavaScript client. 24
5.3 The admin view of the client. 25
5.4 A pending transaction . 27
5.5 The transaction is stored on the block chain 27
5.6 The transaction has gone through and the system now recog-

nises the user’s name and his balance since this data is now
stored in the block chain. 28

5.7 After buying a cup of coffee, the balance of the punch card
has been updated. 29

6.1 Representations of the classic MVC (a) and the modified MVC
(b). In the modified version all addresses of other components
are found using the Manager, represented by dashed arrows. . 37

7.1 The transaction dialogue of AlethZero as of 12/05/2015 when
a user tries to buy a punch card in the proof of concept presen-
ted earlier. 47

IV

Acknowledgement

We would like to thank the very open minded and welcoming communit-
ies surrounding and supporting different cryptocurrencies and block chain
technologies.

A special thanks to the Ethereum development community for answering
all of our questions and helping us getting up and running as quickly as
possible. And doing so while being very busy getting Ethereum ready for
the Frontier release.

V

1 | Introduction

Even though block chain technologies, sparked by the introduction of Bitcoin
in 2009, have existed for about 6 years, we are still in the dawn of their
utilisation. Innovative solutions that have potential societal impact are still
being researched and discovered every day. In light of recent years’ decrease
of consumer trust in the banking sector, block chains might be a solution in
order to rectify this.

So far, block chains have mostly been used to power cryptocurrencies.
The Ethereum Foundation has kick-started a new development in this area
by implementing a generic programmable block chain that is applicable in a
wide variety of applications. This paves the way of utilising the advantageous
features such as its trust-free, transparent and highly secure nature, in many
other application areas than just economic systems. IBM and Samsung are
even experimenting with using the Ethereum block chain to power the In-
ternet of Things (IoT). Block chain technology is a promising technology we
might see used more in the future, as it is currently under the radar of many
entities in the financial sector, why it is interesting to explore the realm of
the new possibilities they offer.

This bachelor thesis will investigate the potential of the Ethereum tech-
nology, and the overall application areas, where decentralisation of organisa-
tions and applications through block chain technology can be useful.

More specifically the focal point of this paper is to investigate how cur-
rently trust-based centralised systems in the financial sector and society in
general, can benefit from becoming decentralised and trust-free. This is done
through evaluating the proof of concept implementation of a digitalised punch

1

card on the Ethereum block chain.

1.1 Research question

How can decentralisation through block chain technology be applied benefi-
cially in economic systems and society in general?
Sub-questions in order to answer the main research question:

• How does the Ethereum block chain work?

• How can a decentralised application be implemented using the Eth-
ereum block chain?

• What are the benefits and drawbacks of block chain technology in gen-
eral?

1.2 Contents of This Paper

This section will give a brief overview of the chronological order of the top-
ics we will cover in this paper in order to answer the research questions in
section 1.1.

In order to understand how decentralised systems based on block chains
work, a background of current research and a thorough account of the tech-
nology will be conducted. By implementing a conceptualisation of a decent-
ralised application, for the student driven coffee shop at the IT University of
Copenhagen (ITU), we will prove the potential of decentralised applications.

On the basis of this implementation we will analyse the benefits and
drawbacks that characterise decentralised systems powered by block chain
technology. The results of the analysis will lay the foundations of discussing
the features of Ethereum and block chains on a general scale, and an as-
sessment of how this technology can be utilised in finance, government and
society in general.

2

1.3 Cryptographic Economic Systems

In 2009 Bitcoin introduced a brand new form of currency. But for a software
developer, the revolutionary technology that made this possible is much more
fascinating: the block chain. Bitcoin is a decentralised cryptocurrency which
runs trust-free, autonomous, publicly and anonymously. All this is possible
thanks to the block chain.

Bitcoin is fascinating due to it being the first big Decentralised Autonom-
ous Organisation (DAO). An organisation that runs autonomously due to
the rules of transactions being dictated by the block chain protocol, and de-
centralised due it being maintained by a peer-to-peer network. The fact that
big organisations can run this way changes the landscape of organisations,
corporations and their applications. As mentioned in the beginning, this
technology is still in its dawn of being applied in other domains. Therefore
this is a very interesting topic to investigate since it has the possibility of
changing an entire ecosystem of transaction systems.

1.4 Why Ethereum?

So why not use the well-established Bitcoin in order to investigate this area?
Ethereum is specifically built to support transactions on a general scale

through the use of smart contracts. Ethereum essentially offers “a featureless
block chain”, that supports a Turing-complete programming language to
write smart contracts in. It is thus a completely programmable block chain
that distributes logic that would normally be run on a centralised server.
While the Bitcoin block chain has been used before in order to support other
than monetary transactions, it is more intriguing to dive into a platform that
was specifically built to do this, why Ethereum was settled upon as a focal
point of this paper.

3

2 | Methodology

This chapter covers the methodologies that are used in order to investigate
and answer the research questions in section 1.1.

2.1 Design Science Research

In order to investigate our research questions we use the Design Science
Research (DSR) approach, more specifically the adaptation developed by
V. Vaishnavi and B. Kuechler[52]. This process revolves around having a
problem that can be investigated by designing an artefact in order to solve
this problem. The artefact is then evaluated in order to discuss and reflect
upon whether or not the problem has been solved. This methodology is very
similar to the suggested guidelines of DSR by Hevner[32] and we will make
use of both of these publications.

2.2 Phases of DSR

The DSR approach splits the process of research into multiple phases as we
can see in figure 2.1.

Awareness of Problem

The process starts with an interesting problem that is often sparked by new
developments in the industry. For example you have knowledge of a system
that has issues that now can be improved upon. In this case there is a problem
of trust and transparency in transaction systems. A specific case is the self-

4

Figure 2.1: Cognitive processes used in Design Science Research as suggested
by Vaishnavi and Kuechler[52].

service transaction system in our coffee shop at the university. Developments
in decentralisation through block chain technology can seemingly be utilised
in some way here.

Suggestion

A proposal of change is made based upon research and theory in the field, and
specifications are made for the artefact that is going to be designed. In this
case, through researching the ecosystem of cryptographic economic systems
and block chain technology the suggestion is to implement a digitalised punch
card system built on the Ethereum block chain.

Development

The artefact is designed and implemented. Our digitalised punch card will
be realised. The back-end of smart contracts are coded and issued, and a
client for users to manipulate these is implemented.

5

Evaluation

The success of the artefact in terms of solving the research problem is ana-
lysed and evaluated through different evaluation methods such as testing,
experimenting and observation[32].

Conclusion

The end of the research cycle. The results of our research is accounted for,
which can be used as basis for more research.

2.3 Reflections on Research

In this report we are using DSR and our account of the technology to give
an educated opinion on the prospects of this technology. More specifically
in which use cases decentralisation of applications can prove useful and its
societal impact.

We are thus looking at a specific case to analyse the technology in detail
in order to upheave this discussion to a more general level. Consequently we
have this extra process layer of reflection in our methodology.

6

3 | Background

This chapter will give you some background knowledge of the research and
developments in cryptocurrencies and block chain technology so far, in order
to give a brief overview of the landscape of this.

3.1 Bitcoin: the First DAO

In the original white paper on Bitcoin from 2008, Satoshi Nakamoto has a
vision of a new decentralised economic system:

“A purely peer-to-peer version of electronic cash would allow on-
line payments to be sent directly from one party to another without
going through a financial institution.” [39]

This vision was realised through the implementation of Bitcoin, which
also is the first example of a decentralised autonomous organisation (DAO)
– an organisation that runs completely autonomously, decentralised, trans-
parent and secure thanks to the underlying block chain[39]. Decentralised
because it runs purely peer-to-peer through nodes of users on the network.
Transparent because the transactions are public and the network open to
everyone. Autonomously thanks to protocols dictating the rules of transac-
tions on the network. And secure due to all nodes on the network verifying
the transactions through consensus algorithms. All these perks together are
the cornerstones of a trust-free transaction system.

7

3.2 Block Chains in Finance

The perks of the block chain are very interesting in finance where trans-
parency, trust and security in transactions are vital[23]. The block chain
has thus been used to develop many economical systems and cryptocurren-
cies such as Bitcoin and thousands of altcoins, such as Litecoin1, Dogecoin2

and Nxt3. Cryptocurrencies are especially handy because you do not need
a middleman such as a bank to ensure trust and security in transactions[11,
23, 39]. This is autonomously dealt with by the block chain protocol[11, 39],
which consequently leads to transaction fees being much lower than that of
a bank[15].

Cryptocurrencies are also handy in microtransactions since you can pay
much smaller fractions of a cryptocurrency than a fiat currency[15]. Addi-
tionally these digital currencies are useful in terms of the global market since
your transactions go directly from peer to peer, avoiding banks. This means
you can send money to anywhere in the world only waiting for a block to
be generated. In Bitcoin’s case this is about 10 minutes[39], which is much
faster than a transaction through multiple banks, and much less costly due
to the fees such an international transaction would have.

The use of block chains have been generalised to trade more than only
money. Digital assets such as shares, contracts and stock options have been
traded as smart property on the block chain. Every object that you have a
right to can be emulated as a smart property. A protocol that does this is
Mastercoin4. Mastercoin uses meta data through what they call an omni-
layer that allows for the creation of digital assets to issue and trade as smart
properties on the Bitcoin block chain. Thus economic systems, and trading
in general, benefit from this trust-free, secure and transparent transaction
system. The latest development in this area is that NASDAQ is experiment-
ing with the block chain in order to automate transaction processes that are
now handled by lawyers[44].

1https://litecoin.org/da/ (visited on 16/05/2015)
2http://dogecoin.com (visited on 16/05/2015)
3http://nxt.org (visited on 16/05/2015)
4http://www.omnilayer.org (visited on 14/05/2015)

8

https://litecoin.org/da/
http://dogecoin.com
http://nxt.org
http://www.omnilayer.org

3.3 Re-Decentralising the Internet

In the recent year, there has been a shift in the research area of the block
chain[19]. Secure and transparent transactions are applicable in many other
use cases than economic systems.

In terms of today’s web, most traffic go through a few gigantic nodes
of corporations such as Google, Facebook, Amazon etc. The internet today
is much more centralised than 10 years ago due to the commercialisation
of the web, why today we have corporations essentially monopolising and
owning parts of the world wide web[51]. There has been a shift in power
from the users to the corporations. We trust all our data in the hands of big
corporations, whose processes are very intransparent[35]. In addition gov-
ernment surveillance programs such as the National Security Agency (NSA)
are tapping into this data without the users knowing[29, 51].

Ethereum envisions to decentralise applications in what they dub a Web
3.0, where applications and their data are run through block chain techno-
logy, thus allowing for a decentralised, transparent and secure internet. This
would shift the power back to the users in a “redemocratisation” of the inter-
net, as stated on their homepage5. Transparency would thus give users the
power to see exactly how their data is handled, and that NSA is not secretly
listening in on your conversations[51].

3.4 From the Internet of Things to the Eco-
nomy of Things

The amount of electronic devices in the world is increasing rapidly[9]. With
the introduction of smart devices in the late 2000s, computers have found
themselves being implemented in virtually anything. There are computers
in cars, our domestic appliances and our house systems. The next step in
development is that these smart objects can communicate with each other
over the internet and essentially maintain themselves. This development in

5http://ethereum.org (visited on 16/05/2015)

9

http://ethereum.org

technology is called the Internet of Things[9, 41]. IBM, in collaboration with
Samsung, is building a block chain powered technology dubbed ADEPT [33,
41] on the Ethereum protocol, to support this network of devices interacting
with each other through smart contracts. They give this example of how IoT
can be utilised:

“We demonstrate how, using ADEPT, a humble washer can be-
come a semi-autonomous device capable of managing its own con-
sumables supply, performing self-service and maintenance, and
even negotiating with other peer devices both in the home and
outside to optimize its environment.” [33]

These transactions between smart objects will develop an Economy of
Things where all these smart devices will be “a point of transaction and
economic value creation for owners and users”[41]. These devices will thus
be able to engage in multiple markets, both financial and non-financial and
autonomously react to changes in said markets.

3.5 Future Research

The research and appliance of block chain technology is still in its dawn.
How this technology will affect society and where future research might be
important, are what we will try to uncover in this report.

10

4 | Account for Technology

In this section we will explain what Ethereum is and why exactly this tech-
nology is extraordinarily interesting in regards to cryptocurrencies and a
decentralised web.

4.1 Ethereum

Ethereum is one of many technologies emerged from the original block chain
technology used by Bitcoin. The original Ethereum white paper[11] written
by Vitalik Buterin in late 2013 describes the basic idea behind a new and im-
proved way of using the decentralised block chain technology. In 2014 Gavin
Wood formally described the technology in the Ethereum yellow paper[53].
The platform is supposed to be released in 2015, but at the time of writing6

it is still in a development state.
Etherum takes the block chain technology to the next level by allowing

stateful user-created digital smart contracts to be executed by implementing
a generic programmable block chain. It is not solely a network for monetary
transactions like Bitcoin, but a network where transactions can be used to
execute an unlimited variety of smart contracts. This block chain is the
back-end of decentralised applications, or as Ethereum dubs them: ÐApps.

Some examples of applications that Ethereum can be used for are: voting
systems, domain name registries, financial exchanges, crowdfunding plat-
forms, company governance, intellectual property and smart property.

616/05/2015

11

4.2 Vision

According to the Ethereum white paper the reasoning for making Ethereum
is to

“ . . . create an alternative protocol for building decentralized
applications, providing a different set of tradeoffs that we believe
will be very useful for a large class of decentralized applications,
with particular emphasis on situations where rapid development
time, security for small and rarely used applications, and the abil-
ity of different applications to very efficiently interact, are import-
ant.”[11]

Ethereum does this by building what they call the “ultimate abstract
foundational layer: a blockchain with a built-in Turing-complete program-
ming language”[11]. This basically means that Ethereum allows everyone to
write smart contracts (described in section 4.4.1) resulting in decentralised
applications where it is possible to build your own arbitrary rules for own-
ership, transaction formats, and state transition functions. This relatively
simple way of creating your own smart contracts, adding them to the block
chain, and using them, creates a great environment to potentially solve some
paramount issues in regards to some of the mentioned examples in section 4.1,
where a centralised authority is trusted. One of the main points of Ethereum
and other technologies using a block chain is that they are trust-free and de-
centralised.

4.3 Block Chain Technology

The block chain is essentially just what the name says: a chain of blocks.
A block contains the data of all transactions within a period of time, and a
reference to the block before it (see figure 4.1). The cryptography that goes
into creating a block differs depending on what block chain protocol is used,

12

Figure 4.1: Simplified version of how Bitcoin’s block chain connects blocks

but essentially you can traverse through the entire block chain and find every
single transaction ever made. Hashing algorithms are used to make sure that
all blocks are well formed and not tampered with, and thus the block chain
keeps itself secure and virtually unbreakable.

The above is one defining feature of block chain technology, another is
that it is public and decentralised. The block chain is not run from a single
server, it is run on a widespread network of computers. They all hold all data
in the block chain, and all work on expanding it. These computers are called
miners (see section 4.3.1). Depending on the block chain protocol, these will
compete to form new blocks that are then added to the block chain when
selected through consensus schemes (see section 4.3.2).

The combination of the two features stated above is what makes the block
chain desirable. It is secure through the immutability it gains from the hash-
ing algorithms, when applied on the decentralised network and transparent
because anyone can look through all blocks. The combination of this security
and transparency is what makes the block chain a trust-free technology.

In the past block chains have been compared to bank ledgers[6, 28]. How-
ever, this definition somewhat limits the block chain artificially, as the general
idea behind it can be used in a much more general sense. Transactions are
not limited to monetary transferrals, but can also be used to transfer any
form of data. How this data is then used, again depends on what block chain
protocol it is sent on.

13

In the remainder of this section, an account for the general features of
the block chain will be made before focusing specifically on the Ethereum
protocol.

4.3.1 Mining

To incline people to use their processing power to carry the system, the block
chain protocols will reward “miners” in different ways. The more miners that
run a node on their hardware, the more secure the system is.

The way you get rewarded as a miner on a block chain is by creating a
block that is selected to be a part of the block chain. Therefore all miners
will try to create blocks (automatically done by the mining software), so the
system has to select which block gets put into the chain. But since there is
no central node that can make decisions, all the nodes have to agree, and
that too is done by a consensus scheme[11]. When all, or most of, the nodes
can automatically agree on a block, it is easy to carry on. Any node that
tries to select a different block will automatically be disregarded by the rest
of the system, and it is therefore impossible to cheat the block chain, unless
you can circumvent the consensus scheme (see below).

4.3.2 Consensus

When deciding on a block, there needs to be consensus in the block chain
system. This is done by the protocol’s consensus scheme, which dictates
the way all nodes can agree that a miner has a right to include its block
into the block chain. On Bitcoin and the current7 version of Ethereum, the
scheme is called proof of work. In this particular scheme, the goal is to show
that the miner has done a certain amount of work that entitles it to the
block reward. In the case of Bitcoin, this is done by requiring the miner
to find a string, that when concatenated with a hash of the previous block
header and then hashed, returns a string with a certain amount of preceding
zeroes. Ethereum’s approach is different, and will be covered in section 4.4.5.

718/05/2015

14

The proof of work algorithm mathematically ensures security on the block
chain, as long as one single entity does not hold majority of the computing
power. Only then will the illegitimate blocks, added by this entity, actually
be added to the block chain, as that entity creates more than half the new
blocks. The fact that the proof of work is made from the hashed header from
the previous block, and that headers contain a hash of all transactions in that
block (see figure 4.1), changing an old transaction requires the perpetrator
to recalculate the proof of work for all subsequent blocks. It then has to
convince the system to use this chain by continuously adding blocks to this
chain at a higher rate than the legitimate chain.

Another consensus protocol is called proof of stake. This is a consensus
protocol that is based on the distribution of cryptocurrency within the sys-
tem. Proof of stake is the consensus algorithm that Ethereum aims to use,
as it does not require the waste of resources that proof of work does[31]. It
has, however, been argued that proof of stake cannot be used as a consensus
scheme in its pure form[12, 43]. Unless specified, this paper assumes that
proof of work is used, when discussing the block chain technology.

4.4 Technology of Ethereum

4.4.1 Smart contracts

What differentiates Ethereum from most other block chain technologies, is
how it utilises smart contracts.

A smart contract is a piece of code that the Ethereum Virtual Machine
(EVM) (described in section 4.4.6) is able to execute on the block chain. Once
this piece of code has been added to the block chain, the smart contract itself
cannot be altered, only the storage of the smart contract can. This means
that there now exists some piece of code that acts as a contract and that
is available for anyone to use. As mentioned, the execution of these smart
contracts are made possible by the Turing-complete programming languages
that are compiled into EVM bytecode. These languages are, as of May 2015,

15

Solidity8 (Java like), Serpent9 (Python like), Mutan10 (C like), and LLL11

(Lisp like).
A smart contract has an address, just like an external account (essentially

a user), but instead of acting like a wallet, it will execute code based on the
data it receives. Smart contracts can call other smart contracts in almost
the same way, through messages, which will be explained in section 4.4.4.

In order to avoid malicious and infinitely looping code or distributed denial
of service attacks to be executed on the block chain, each execution and
creation of a smart contract is powered by gas (see section 4.4.3). Powered
means that the amount of gas needed to run the contract is determined by
the total amount of computations and storage entries of the byte code that
the EVM compiles the smart contract into.

Even though it is estimated that the total amount of computing power
available directly on the block chain is equivalent to that of a 1999 smart-
phone[10], smart contracts are extremely powerful in the way they function
as the building blocks of world wide decentralised trust-free systems.

4.4.2 Transactions

A transaction on the Ethereum block chain contains 6 fields; the recipient of
the transaction (be it a user or a smart contract), the signature of the sender
and the amount of ether to send with the transaction. It also has an optional
data field, a start gas value and a gas price value. The first three fields are
self explanatory, it is the final three that make Ethereum stand out. The
data field can be used to transfer parameters to a contract. The remaining
two are explained in section 4.4.3.

8https://github.com/ethereum/wiki/wiki/Solidity-Tutorial (visited on
16/05/2015). This resource states that it is JavaScript like, however, as JavaScript is not
strongly typed, or object oriented, we believe that it is more Java like than JavaScript
like.

9https://github.com/ethereum/wiki/wiki/Serpent (visited on 16/05/2015)
10https://github.com/obscuren/mutan (visited on 16/05/2015)
11https://github.com/ethereum/cpp-ethereum/wiki/LLL (visited on 16/05/2015).

As of this date, it is written in a non-English language, but a commit from 09/04/2014 by
Gavin Wood show the text in English.

16

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/obscuren/mutan
https://github.com/ethereum/cpp-ethereum/wiki/LLL

4.4.3 Ether and gas

Ethereum uses its underlying network unit, ether, to fuel the contracts ex-
ecuted on the block chain. Fueling is understood as a way to pay for the
execution of EVM bytecode and storage of data on the block chain. How
much a specific computation will cost is defined by the complexity of the
computation. The most basic computations such as addition, subtraction,
and multiplication is intented to cost 1 gas. Contracts and transactions also
have a start price that is fixed in order to pay the miner for his computational
power. The EVM will on compilation of the code of the smart contract or
transaction, decide the amount of computations and multiply them by the
current gas price, thus determining the price of executing the desired trans-
action:

pricetransaction = (computations× pricegas) + pricestart

Since Ethereum is still in an early testing stage, the real gas price has
not yet been decided, and is therefore, as of May 2015, fixed at 10 szabo.
1 szabo is 10−6 ether, which means that for 1 ether you can get 100,000
computations[25]. The gas price will however be changed when the first
non-testing block chain gets launched12.

4.4.4 Messages

Messages are essentially transactions between two smart contracts. They
carry almost the same fields as a regular transaction, except there is no
gas price. The gas used by the sum of all computations done by all smart
contracts activated by a transaction, must be covered in the gas field of said
transaction[11].

12http://ether.fund/tool/gas-price (visited 19/05/2015)

17

http://ether.fund/tool/gas-price

4.4.5 Mining ether

There are some differences in the way the Ethereum block chain and the
Bitcoin block chain works in terms of mining. Each block on the Ethereum
block chain contains the entire state of the Ethereum system, stored in a
“Patricia tree”, which is an evolved “Merkle tree” as known from Bitcoin. It
only stores the data of new transactions, whilst unchanged data is stored as
pointers to the original block location[11].

Also the way a miner is selected to create a block on the block chain is
different to prevent some of the centralisation found in Bitcoin’s block chain.
Bitcoin requires the miner to do a specific hash function on some strings,
which means that it is possible to use application-specific integrated circuits
(ASICs), which is already being done. This makes it almost impossible for
the regular user to have a chance to mine. The block validation is now done
in big mining pools relying on this technology. This is even worse, since
at the time of writing, the three biggest mining pools hold over 50% of the
computing power and previously Ghash.io have been close to it as well[5, 40].

Ethereum aims to use a model where a miner will have to process ran-
dom transactions from previous blocks and hash the result. This means
that, as transactions can compute smart contracts that can hold any kind of
computations, the utilisation of ASICs are not possible in the same way[11].
Secondly, a miner has to have the entire block chain available, so mining
pools cannot be used in the same way. The only way of bypassing this is
by “poisoning the well” by including a large number of contracts designed to
cater to specific ASICs, and that is a problem that are yet to be addressed
by Ethereum at the time of writing[11].

4.4.6 Ethereum Virtual Machine (EVM)

The Ethereum block chain can be described as a block chain with a built-
in programming language or as a consensus based globally executed virtual
machine[10]. What takes care of the internal state and the computations is
called the Ethereum Virtual Machine (EVM). The EVM can be thought of
as a large decentralised computer containing millions of objects called “ac-

18

counts”. Accounts have the ability to maintain an internal database, execute
code and talk to other accounts. In section 4.4.1 we describe smart contracts.
A smart contract is itself an account. Externally owned accounts (EOAs) are
controlled by a private key, and if you own the key belonging to the EOA
you have the ability to send ether and messages from the EOA.

Computations in the EVM are done in a stack-based bytecode language.
An EVM program is a sequence of opcodes. Basically the EVM works in
the same way as many other virtual machines. It takes some programming
language and compiles it into low level code that the computer, on which it
runs, understands. Due to this, developers do not have to write low level code,
but can use one of the high level languages designed for writing contracts
mentioned in section 4.4.1. Any code written in these languages needs to
be compiled into EVM bytecode before being sent in a transaction with no
recipient to create a smart contract.

4.4.7 Block time

The block time is the amount of time it takes for the network to assign a new
block to the block chain, thus confirming pending transactions. Ethereum
has a block time of 12 seconds, but there is no guarantee of the amount of
time it actually takes for the network to assign a new block. It is just a value
the network aims to hit, and it does this by adjusting the block difficulty[18].

The block difficulty is regulated each time a new block is found. If a
block is found “too quickly”, that being less than 12 seconds, the difficulty
of finding the next block goes up. If it takes too long time to find a block,
the block time consequently goes down.

The difficulty is defined by how many hashes on average it takes to create
a new block. Thus if the difficulty is high, the harder it is to find a hash
within the certain goal that satisfies the proof of work-algorithm.

The reason Ethereum has a shorter block time of 12 seconds compared
to Bitcoin’s 10 minutes is that contrary to the monetary transactions of
Bitcoin, the Ethereum block chain is used in a wide variety of applications
where transactions need to be more responsive[18].

19

5 | Proof of Concept

This chapter will cover the implementation of our proof of concept. An
explanation of the current system and the implementation of a new system
will be given.

5.1 The Concept

To test out the potential of decentralisation and the Ethereum block chain,
we use our local university coffee shop Analog as our case. The idea is that we
want to implement a digitalised punch card for coffee using smart contracts.

The reason this case is chosen is that it is currently a trust-based system
with inexplicit transactions rules. The features of the block chain seem fitting
in this case, due to being able to make the transaction process trust-free
through dictating the transaction rules.

5.1.1 Current system

At this point in time, the way the “real life contract” works is that you buy
a card that is worth 10 cups of coffee for 50 DKK. Each time you want a cup
of coffee you deduct one clip using a scissor. Then you fill up your cup.

The punch card is an example of an artefact that we have given a certain
value in the real world. The punch card in it self is worthless. The materials
of the punch card are worth next to nothing. It only has a value when used in
a transaction in a specific place. Thus, the idea of the punch card is that you
can buy coffee without the need of a cleric. It is up to the user of the punch
card to deduct the correct amount of clips when buying a cup of coffee. This

20

way you can get coffee at all times through self-service.

5.1.2 The issue of trust

There are however some problems using this method. This method only
works through trusting the users. And to trust the users, they have to be
well informed about how the system works. For example: which kind of
beverages a punch card gains access to and how long the punch card is valid
and so on. They have to acknowledge the rules of the “real life contract”.

In the current system there is no way of actually ensuring that the users
deduct the correct amount of clips when purchasing coffee – or even pay at
all, unless there is a cleric, which ruins the point of the system. The reason
users deduct the wrong amount of clips can both be malicious behaviour, but
also misunderstandings of the system. Using a smart contract as described
in section 4.4.1 could seemingly prevent these problems.

So how would one go about implementing a decentralised system like
this?

5.2 Implementation

This section will cover in detail the process of implementing the smart con-
tract using the programming language Solidity and client using the Ethereum
JavaScript API.

5.2.1 Smart contract

In order to obtain the desired functionality, a smart contract needs to be im-
plemented to dictate the rules of the system. This section will explain how
the code functions. The entire source code can be found in appendix A.1.1.

First of all functionality is needed to issue punch cards for users to pur-
chase. In order to distribute this smart property a function called buyClipcard
is implemented, which allows for a user to purchase a punch card for a cer-
tain price. The price can be adjusted by the issuer of the smart contract

21

to whatever amount you like through a function called setPrice. When
purchasing a punch card, the contract will make sure you have a sufficient
balance of ether before you can commit the transaction. To keep track of
users and their balances, a map of user addresses on the network and their
clipcard property, called clipcards, is implemented. This way it is possible
to check if people own a punch card or has sufficient clips.

After this functionality it is needed to dictate the rules of buying a cup
of coffee, using the punch card token. This part of the contract is basically a
“vending machine” in the sense that a product has a fixed price. A function
that deducts one clip from your punch card is therefore added as useClip.

In order for this to be fully automated, you would have to implement
a digital lock on the coffee dispensers. Otherwise you would not solve the
problem of people just stealing coffee. To implement a hardware solution is
out of scope for the system, since it is the aim of this paper to implement a
proof of concept on how the software should be specified. However a system
like this could be implemented, by having a lock on the dispensers connected
to the network. A smart contract could then be implemented to turn this
lock on and off, as this smart contract would be invoked by the system. Being
able to invoke hardware through block chain technology is a small example
of IoT (see section 3.4).

A fully fledged automated system could thus be implemented with two
smart contracts in conjunction with each other.

In order to issue these smart contracts onto the network you make a
transaction with the smart contract logic as described in section 4.4.6. As
stated in section 4.4.1, the price of fueling this contract is determined by
how many operations it includes. If we have enough ether to fuel the smart
contract it will be submitted to the block chain and be accessible through an
address.

5.2.2 JavaScript client

Now that the implementation of the back-end functionality has been covered,
it is desirable to use our smart contracts in an easier way than through com-

22

mand line transactions. This is possible by using the Ethereum JavaScript
API in order to build an HTML client.

Ease of use

The role of the client is basically to make the smart contract easier to use.
It will display stored information and make functions accessible through a
graphical user interface (GUI) that interacts with the contract itself. Thus,
instead of making specific transactions with data to the smart contract, input
fields and buttons have been made to take care of the job for you, as seen
in figure 5.2. This is done by using a JavaScript API provided by Ethereum
that utilises web3.js[26]. The web3 object makes it possible to communicate
with the network because it knows your private address. Therefore you
can only use decentralised applications (ÐApps) in a browser that utilises
web3, for example Mist or AlethZero, which are both clients developed by
Ethereum. The JavaScript API offers a lot of functionality that can be
used to communicate with a smart contract and the Ethereum block chain.
Namely we utilise the function of getting stored data out of the contract
to display in our client and calling functions to manipulate this data. The
source code of our client can be found in A.1.2.

5.3 Tour of the System

In order to access the client of our decentralised application, you need a
browser that support Ethereum based applications. Currently there are two
clients which are AlethZero13 and Mist14.

This section will take the reader on a tour through the usage of our
system, while explaining what goes on under the hood. In this example the
client, AlethZero as seen in figure 5.1 is used to showcase our application.

13https://github.com/ethereum/cpp-ethereum/wiki (visited on 18/05/2015)
14https://github.com/ethereum/go-ethereum/wiki (visited on 18/05/2015)

23

https://github.com/ethereum/cpp-ethereum/wiki
https://github.com/ethereum/go-ethereum/wiki

Figure 5.1: AlethZero – the browser used to view our client and display the
state of the network.

5.3.1 The welcome screen

Once you are connected to the Ethereum network through a supported
browser, your local block chain will be synchronised. Upon data synchron-
isation you can navigate to http://malone.dk/clip in order to access the
digitalised punch card. Here you will be greeted by the landing page of our
client as seen in figure 5.2

Figure 5.2: The GUI of the HTML/JavaScript client.

24

http://malone.dk/clip

All the data displayed in bold are information taken directly out from
the block chain, as it is contained in the storage of the smart contract of the
implementation.

Since you are connected to the Ethereum network through authenticating
with your private key, one of the strong suits of these kind of applications
is that there is no need for logging in, since the network already knows who
you are.

In this case the client does not know me yet as I have not used the system
before. Therefore I am identified as “User”, and have no balance.

In addition the client displays the current price of a punch card; the
network address of the issuer of the contract; and the network address of
the smart contract that controls the lock on the coffee dispensers. All these
values can be updated through an admin panel as seen in figure 5.3 that are
immediately accessible to users with admin rights. Consequently there is no
admin login either since the data of user rights too is stored on the block
chain.

Figure 5.3: The admin view of the client.

25

5.3.2 Purchasing a punch card

In order to purchase a punch card, you need some amount of ether. In the
current implementation the price is set to 1 finney which is 0.001 ether.

The price is set low for testing purposes but as stated above it can be set
as you wish. In the end ether essentially has a monetary value. The price
could thus be set accordingly to fit the price of the physical punch card or
even be controlled by a smart contract that keeps an eye on fluctuations in
the market which is discussed in section 7.4.5.

Upon the release of Ethereum, ether can be acquired through exchanges
or through mining on the network. At the time of writing15 Ethereum is still
in development, thus “real ether” cannot yet be acquired.

If you have an adequate amount of ether you can purchase a punch card
by typing your name in the name input field and click on the “Top up your
punch card” button.

This will initiate a transaction to the smart contract, powering the system,
consisting of the payment of 1 finney, your name and that you want to invoke
the purchase punch card function on the smart contract. This is all done
through the JavaScript of the client, thus the plumbing has been done for
you. Your address on the network is the sender of this transaction why the
smart contract will map this address as the owner of the punch card.

When using AlethZero you will be able to see the transaction in the
Pending window as seen in figure 5.4. Here it is seen that the transaction is
completely transparent as all its data is publicly visible. Visible in the sense
that the computational operations I want carried out in addition to the data
I send with it are listed. Whilst waiting for the transaction to go through, a
loading screen appears.

Once a new block is discovered the transaction will be submitted to the
block chain. As accounted for in section 4.4.7 the block time of Ethereum is
12 seconds. Discussions on the block time can be found in section 7.4.3.

The transaction is thus carried through once it is submitted to the block
1518/05/2015

26

Figure 5.4: A pending transaction

Figure 5.5: The transaction is stored on the block chain

chain. In figure 5.5 we see that the transaction and its data are now stored
publicly in a block. The system will now recognise you through your address
being mapped in the smart contract. Consequently your name and a balance
of 10 clips will be displayed as seen in figure 5.6.

This transaction is now stored forever on the block chain for everyone to
see, but unable to be tampered with.

27

Figure 5.6: The transaction has gone through and the system now recognises
the user’s name and his balance since this data is now stored in the block
chain.

5.3.3 Purchasing coffee

If you have a punch card you will have a balance of an amount of clips. The
smart contract thus looks in the block chain to determine if your address is
mapped to a punch card entity, and checks the balance of this. If you have
clips left you are granted access to buying coffee. Consequently the button
“Punch your card” in the client will not be greyed out.

To purchase a cup of coffee and thus deducting a clip from your balance,
you click said button. Again a pending transaction to the smart contract
similar to figure 5.4 will be initiated.

This transaction only contains a method call to invoke the deduct clip
function of the smart contract. This method call will deduct your balance
by one, while sending a message to the smart contract of the lock on the
coffee dispenser to open for a period of time. Once again you wait for a
block to be found before the transaction is carried through after which your
balance should be updated to be one less as seen in figure 5.7, and the coffee
dispenser unlocked.

The block chain is now updated with the data that you have purchased

28

Figure 5.7: After buying a cup of coffee, the balance of the punch card has
been updated.

a cup of coffee, just like when a punch card was purchased in figure 5.5, thus
concluding the tour of the system.

5.4 Modular Implementation

Another way of implementing the proof-of-concept system is to use a mod-
ular smart contract system. An implementation of this can be found in
appendix A.2. However, it has not been possible to run this successfully on
the testnet, despite the fact that the code should be working16.

The modular implementation is build up around modules that each have
their own responsibility. The proposed modular implementation is made up
of seven smart contracts, with each its own responsibility, and each being
interchangeable without it affecting the others.

16An administrator on the Ethereum Forum confirmed that the code does
not have any obvious problems: https://forum.ethereum.org/discussion/2136/
help-with-contracts-interacting-with-each-other (visited on 15/05/2015)

29

https://forum.ethereum.org/discussion/2136/help-with-contracts-interacting-with-each-other
https://forum.ethereum.org/discussion/2136/help-with-contracts-interacting-with-each-other

5.4.1 The contracts

There are seven smart contracts in the modular implementation (and one
super smart contract that is not actually pushed to the block chain).

Issuer (appendix A.2 line 23) is the smart contract that communicates
with the GUI. It is responsible for making the needed information visible to
the user (getBalance, getPrice, getName), and handling the input from the
user (buyCard, punchCard). It also handles input from the owner (setPrice,
setAddAmount and setPunchAmount).

AssetHolder (appendix A.2 line 218) is the smart contract that handles
the system’s assets (ether and punches/clips). It works as the controlling
layer between the Issuer and the PunchDb. It is responsible for making the
PunchDb add and deduct the right amount of punches to the punch card,
transferring ether to the owner or the sender depending on the event. It can
also “unpunch” a punch card, should the Machine fail.

Settings (appendix A.2 line 326) is the database for storing settings. The
settings are stored in pairs of keys of type bytes32 (a string) and values of
type uint. Functions for setting and getting settings are also available. This
way, the settings module can store an arbitrary amount of settings, though
those used in this system are “price”, “addAmount” and “punchAmount”.

NameDb (appendix A.2 line 399) is the database for storing names. It
stores names in pairs of addresses and strings, and functions for setting and
getting names are available.

PunchDb (appendix A.2 line 350) is the database responsible for storing
the amount of punches available to the users. It stores the information in
pairs of addresses and integers (as uint). Functions are available to add and
deduct a number of punches as well as getting the balance of an address.

30

Machine (appendix A.2 line 185) is the artificial representation of the ma-
chine that the system runs. It simply keeps an account of when it should be
unlocked (in terms of block number) and how many cups it has poured since
it was last filled. It is set to fail every 10th time to simulate it running out
of coffee, after which it is immediately refilled (the counter is reset). It also
provides a getter that tells whether it is currently open.

Manager (appendix A.2 line 434) is the smart contract that manages the
other smart contracts. All the other smart contracts extend a super contract
that is called IsManaged (appendix A.2 line 2) that provides a field for storing
the address of the manager and a function for setting this. The manager
stores the smart contracts in pairs of strings and addresses that makes it
possible to store an arbitrary number of smart contracts in the manager. All
the smart contracts then use the manager to contact each other by getting
the right component using the getComponent function.

31

6 | Analysis of Implementation

In this chapter we will analyse our simple implementation by comparison
with the old system in terms of trust, security, scalability and ease of use.
We will at the end reflect on the proposed modular system compared to the
simple system. The reason for analysing the simple implementation and not
the modular is that the latter never ran on the testnet and therefore could
not be tested.

6.1 Testing

In order to do a meaningful analysis of our implementation it must first be
documented that it is in fact working as intended.

6.1.1 Solidity contract

To test the proof of concept smart contract implementation, you would nor-
mally do extensive unit testing on it to make sure that every method works
correctly, especially in boundary cases. This poses a problem in the cur-
rent state of Ethereum development, as there is not at present time17 a unit
testing library available for Ethereum development. There is one under de-
velopment, but as it states on its README.md on GitHub it is not ready
for use18.

Due to this lack of an automated test environment, another path had to
be taken. With the simple functionality of the punch card system, black box
testing was deemed acceptable.

1713/05/2015
18https://github.com/androlo/sUnit (visited on 13/05/2015)

32

https://github.com/androlo/sUnit

6.1.2 Black-box testing

As unit testing is not available, black box testing was chosen as an altern-
ative. The results can be found in appendix B on page 101. The tests are
designed to test boundary cases for all the functions used by the client, ex-
cept for the setIssuer function because that would mean to hand over the
client to someone else, and the functionality is equal to that of setMachine.
commitSuicide and emptyMachine are not tested either, as they are trivial
in their functionality.

As it can be seen from the test results, all tests but one passed. The
one test that failed is in relation to the price of a punch card. The test is
designed to test that negative numbers cannot be pushed, as it would result in
a negative price. However, the function has been implemented using unsigned
integers that does not allow for negative numbers, instead converting it to
a very high number instead. Thus, the test fails. It is however chosen that
this need not be fixed. Firstly, it is an administrative function, why only
people with knowledge of the system will access it. Secondly, the result of
the action is very clear, and can at worst only mean that customers cannot
buy a punch card, not that they can get them for free. When this is upheld
against the costs of issuing an updated contract, leaving it be is the better
solution.

6.1.3 JavaScript client

The testing of the client would normally entail some form of usability tests
as well as tests of the functionality. There are a few different functionalities
present in the client, however they all link up directly to functionality in
the contract, and due to the pending window in AlethZero it is possible to
check that the correct transactions are sent at each click. The remainder
of the functionality links up to showing information on the screen, which is
easily tested by manual checks in AlethZero as both the original issuer and
a customer and a check of the contract in a non-Ethereum client (to check
that it states the correct information).

Usability testing was in this situation deemed a waste of time. The reas-

33

oning behind this is that the client is not meant for production in its current
state, it is, as the name tells, only a proof of concept.

6.2 Trust and Security

As the implementation of the smart contract dictates the rules of the trans-
action processes, it removes the issue of trust from these. You are only able
to buy a punch card if you have sufficient funds. It is able to identify if a
user has the right amount of clips for a cup of coffee. It will deduct the right
amount of clips and update a users balance automatically.

Consequently, the users do not need to know the transaction rules as they
are instead dictated by the smart contract. This way malicious behaviour
and misunderstandings are ruled out of the system since they are carried
out automatically according to the defined protocol. Additionally due to the
transparency of the operations conducted on the smart contract, users will
also be able to verify that the actions are in fact carried out correctly, and
that there are no invisible bias or malicious computing happening during
transactions.

Therefore the system operates trust-free as we circumvent the problem of
trusting the users to carry out the transaction correctly.

6.3 Limitations

There are some limitations and drawbacks to this implementation that will
be analysed in the following.

6.3.1 Block time

One of the downsides of our implementation is that transactions can take up
to approximately 12 seconds, due to the block time of the block chain. When
purchasing a punch card or a cup of coffee the transaction has to go through
and be submitted to the block chain before any balances are updated. This

34

means waiting for a new block to be discovered. In general this would average
out to around 6 seconds of waiting for your transaction to go through.

The block time issue is hard to circumvent due to the nature of the
Ethereum block chain. This would mean to introduce a centralised service
of some sorts in conjunction with the block chain in order to bring down
transaction time. Using the block chain would then seem pointless since you
are no longer having a purely decentralised system and thus compromising
transparency, trust and security.

6.3.2 Extendability

Our system relies on two smart contracts where one of them has all the
transaction logic. If we are to change inner workings of this specific smart
contract we have to issue the entire thing again which is costly in gas, and
all current punch cards would be lost, meaning that ether would have to be
manually transferred back to the customers, which is costly too. Also the
client needs to be updated with a new smart contract address for connectivity.

To address this problem getters and setters have been implemented in
order to give the issuer the opportunity to change a lot of the data stored
in the smart contract without having to issue an entirely new one. You are
for example capable of changing the address of the coffee machine smart
contract and the address of the issuer (essentially the administrator of the
contract). The only reason to issue a new smart contract is if the logic of
some of the transaction functions needs to be updated. These functions in
its current form are however simple so it would be fair to assume that such
updates would happen rarely.

If the system is to be extended you would have to either make another
smart contract that manipulated the old one, essentially a module on top of
the other, or reissue a new smart contract with the new logic.

6.3.3 Improvements

If we were to further develop the system, the nature of smart contracts would
make it easy to extend the system with new features automating other pro-

35

cesses of the coffee shop.
In transaction systems in general, the use of a block chain can prove useful

in regards to get statistics of sales and revenue as you will have a complete
dataset of transactions in one place. Consequently additional smart contracts
can be implemented in order to handle the purchase of supplies through
interacting with the record of sales. In this way, by automating processes,
through smart contracts in conjunction with each other, a shop can be turned
into a DAO.

As stated in section 5.3.2 the system could be extended to handle pricing
of the coffee automatically. A smart contract could set the price in ether in
accordance to a fiat currency. In addition a type of exchange could also be
implemented in order to accept different kind of cryptocurrencies or even fiat
currencies. Such smart contracts might already be implemented in different
systems on the block chain, but due to the public network you could utilise
the same smart contracts in a different system. Due to this, by developing one
transaction system in a clever way you have the generic building blocks of the
smart contracts to easily build a transaction system that handles completely
different entities. This is again one of the strong suits of smart contracts on
the block chain.

The scope of this development is however only to implement the transac-
tion process of the punch card.

6.4 Modular Implementation

In order to make the smart contract less costly to update, it could be split
up into more smart contracts as modules of logic as shown in the modular
implementation detailed in section 5.4.

This implementation is related to the Model-View-Controller (MVC)[1]
pattern with some alterations to make it fit better on the block chain. The
alteration is that another component has been added to the pattern that
keeps track of the different modules. This is needed, since the nature of
the system does not allow for a restart and creation of new objects with the
new components. Consequently the components have to be exchanged on

36

(a) Classic MVC

(b) MVC with a manager

Figure 6.1: Representations of the classic MVC (a) and the modified MVC
(b). In the modified version all addresses of other components are found
using the Manager, represented by dashed arrows.

a running environment or the system has to be discarded. In figure 6.1, a
representation of the differences between the classic MVC and the MVC with
a manager can be seen.

If this pattern is applied on the proposed modular implementation, it is
obvious that the Manager is the manager in this case. The Issuer is then the
view of the model, while the AssetHandler is the controller for the PunchDb
which are one of the models. The other two models in the system are the
NameDb and the Settings. All three models simply store data without really
“thinking” about it19. The Machine, which is an artificial representation of

19The PunchDb does however check that it cannot go into negative features – it can be

37

a physical artefact stands out of this model in its current form.
The main reason for using this system over the simple implementation

is extendability as mentioned in section 6.3.2. With the modules being in-
terchangeable, it is possible to extend the system without it affecting other
modules.

As an example, imagine that it is needed that the birthday of customers
are shown and stored. In this case only the issuer needs to be updated, and a
module for storing birthdays added. The fact that this can be done not only
saves the issuer money, as the whole system does not need to be replaced,
it also makes sure that all the customers still have their punch cards up to
date without the need to transfer anything, as needed in the non-modular
solution (see subsection 6.3.2).

The extra checks for message senders (needed for security reasons) and
getting the addresses of other smart contracts do increase costs of running
the modular implementation, as compared to the simpler solution. It is thus
a matter of how likely a future extension of the system is, whether the one
or the other solution should be chosen. This choice is harder to make for a
decentralised system, as computing power is a scarce resource. In the case of
the coffee shop at ITU, the simple implementation is most likely adequate,
because of the limited user base and the low risk of needed extension later
on.

argued that this belongs in the controller, however to limit the amount of unnecessary
intercontract calls, this has been moved as it makes no sense to allow negative accounts
in the system

38

7 | Discussion

In this chapter we will discuss our implementation and on basis of this some of
the features of Ethereum and decentralisation through block chain technology
in general.

7.1 Why Decentralise?

There are many other ways to implement a digital punch card, than using
block chain technology. Digital assets are commonly known – so why not
just implement a system where your punch card balance is maintained by a
database running on a web server?

When implementing a system like this you will introduce a different aspect
of trust, in the user having to trust that the system works correctly. Thus
the system will not be verified by anyone but the issuer. A system like this is
completely opaque and the user will not be able to know the inner workings
of the transactions. The user has no way of verifying that the transaction is
run correctly.

The fact that this solution is centralised introduces other problems as
well. When the system runs on a centralised unit, it can be tampered with
by someone hacking the system. Some level of security is needed. Also you
introduce reliability on hardware. One server crash can have catastrophic
consequences if proper backups are not implemented. And no matter what,
a crash will mean downtime and lost profit.

These problems are inherently solved by the block chain technology in
Ethereum. The lack of a central web server means that there is no server
that can crash and bring downtime. Even if a node crashes, the system

39

will still be up. As you cannot tamper with the data stored on the block
chain, the system is much more resilient to hackers. Since the system is run
transparently, you need not trust the issuer either.

Therefore block chain technology can be effectively used in transaction
systems due its perks in the areas of security, transparency and trust – aspects
that are all of utmost importance when conducting a transaction.

7.2 The Greater Picture

It is easy to make the specific implementation more generic. It is basically a
punch card, which in turn is basically a parallel currency. Relatively easily,
our smart contract can be rolled out in many different instances, each having
its own GUI and offering a secure way to utilise the beneficial factors of the
punch card method.

The fact that smart contracts can call other smart contracts makes series
of smart contracts possible. In our example a punch will call a smart contract
releasing a coffee machine to brew a cup of coffee. This could be extended
to a series of contracts, performing different actions, to provide additional
features. Due to this you can even use the smart contract as a single ticket
system, while still implementing security for the handling of these tickets at
the time they are used.

Perhaps you would not even need to specify all the smart contracts your-
self due to all smart contracts being public and able to interact with each
other. You could utilise a smart contract someone else has built in conjunc-
tion with your own system. For instance, our modular implementation could
make use of the Ethereum namereg smart contract20. This is one of the
powers of Ethereum: a smart contract can stand alone, but the same smart
contract can be part of a much bigger system if it is implemented cleverly.

20https://github.com/ethereum/dapp-bin/tree/master/namereg (visited on
16/05/2015)

40

https://github.com/ethereum/dapp-bin/tree/master/namereg

7.3 Economic Systems

As mentioned, our proof of concept system can be viewed as a parallel cur-
rency – one that in our example can be used to buy coffee, but as argued for
could be used for basically anything. In our example, you use ether to buy
the currency, but if you want to, you could set up a system that exchanges
physical currency to ether before sending it to our system. Because of this
our system could be the cornerstone in many situations where some sort of
physical artefact can be exchanged for a digital one, and where security and
reliability is important factors.

By having the entire block chain in the back of the smart contract, it
becomes impossible to forge fake punch cards without having 51% of the total
computing power of the network[11]. Furthermore it becomes impossible
to (maybe illegally[38]) resell your clips for profit. Both factors are very
appealing to the issuer. They can both secure that the issuer gets the money
it is entitled to, and that no one will be able to buy large quantities with
the sole objective of selling them off for profit, thus possibly buyout the
issuer. The customers on the other hand know that they get what they pay
for. There is no way for the issuer to artificially alter the balances of the
customers without a publicly exposed method that does so.

7.4 Challenging the Block Chain

Naturally, everything is not just well and good in block chain country. As
with all new technologies, there are some issues that have not yet been solved
and an implementation phase is often more complicated than desired when
a lot of parties, radical changes, and trust are involved.

7.4.1 The size factor

One of the first problems that springs to mind is that of scalability. Vitalik
Buterin is very aware of this, and has been addressing the problem early
on[15–17]. As he writes, the problem is that for the whole theory of the

41

security of the block chain to apply, a large number of full nodes are required.
Otherwise you might end up with a less decentralised system, like Bitcoin
has experienced[5, 40]. The problem here is that this nullifies the security
measure that decentralisation is a big part of (see section 4.3). It is unlikely
that anyone with the computing power to carry such a big node would care
about a small coffee shop such as the one at ITU, but if the technology is
to be applied in a wider selection of application domains, as discussed in
chapter 8, it is a very important aspect to discuss.

From the start, Ethereum has taken steps toward managing scalability
better than Bitcoin. For instance, by using accounts rather than being based
on unspent transaction outputs (UTXO), which according to Buterin causes
a significant amount of space being used, when a lot of transactions are being
performed from one address.

Buterin has already presented several ideas on how to deal with the
scalability problem[13, 15–17], though common for them all is that they
slightly lower security and heighten complexity a great deal. Part of his
concern is usability due to transaction fees, meaning how small values can
feasibly be transferred on the Ethereum network. The major concern, how-
ever, is that of the sheer data size. As mentioned, the larger the block chain
gets, the less secure it becomes as only a few nodes will be able to contain all
the data. Buterin even mentions that in a use case like Ethereum, where the
uses for the block chain are so many, it might be conceivable that the block
chain will rise to a size where no single data center can contain all of it[16].
Therefore it seems like partitioning the block chain into smaller digestible
pieces may be the only way to go forth.

The problem is that when you subdivide the block chain into smaller
substates, you also divide the amount of hashing power needed to push il-
legitimate blocks, as miners only mine blocks within their own substate.
Therefore, if there are 200 substates, one will only need 4% of the total
hashing power to take over a substate and potentially invalidate the entire
system[16]. Several possible solutions to this are covered, but all of them
need to be proven effective before they can be implemented safely. Buterin
goes on to explain a model he calls “The Twelve Dimensional Hypercube”.

42

In this model, the block chain is also subdivided, but in a different way, so
that there are edges between the states that messages can move along. This
solution also includes a move from the current consensus scheme of proof of
work to proof of stake (see section 4.3.2). This should make sure that only
if one controls more than 33% of the total sum of ether in the system, they
can make illegitimate transactions.

The final solution presented to the scalability problem is to have many
block chains[17]: some for one specific purpose, some more generalised pur-
poses, like Ethereum. The idea behind this is that the block chains can use
each other to provide security for one another, no matter what the separate
block chains are used for. This way, a miner can mine on a block chain of
a suitable size, and yet security would still be very high, albeit not as high
as if only one block chain existed. This solution also relies on a proof of
stake model, like the previous one, but because of the interconnectivity of
the different chains, a high percentage of the combined stakes of the block
chain ecosystem would be needed.

These solutions are all more technical than the scope of this paper and
only visions at the time of writing21. Therefore we will not go into more
detail about the technical aspects of them.

7.4.2 Coping with stress

Another obstacle that is important in the more widespread use of block chain
technology, but not so much in the specific example presented in chapter 5,
is how the system copes with stress. A payment technology such as VISA
handles 4,000 transaction per second in average and has been stress tested in
2013 to handle 47,000 transactions per second[50]. Bitcoin can in comparison
only handle 7 transactions per second, due to the fact that block sizes are
restricted to have a maximum size of 1 MB[4]. This is not so much a problem
if the block chain is only used to buy coffee in a small coffee shop. However,
if Ethereum is to be utilised on a broad spectrum of applications, more are
needed. If for instance the customers in the coffee shop cannot buy coffee

2117/05/2015

43

because an election is being held in Nigeria, it is going to be hard to sell the
idea of the system to the coffee shop.

It is obvious that this is not a viable amount of transactions, should this
technology be implemented on a global basis. Changes to the way different
companies use the block chain are, however, being made, in order to assure
that a transactions per second level alike or even higher than VISA’s can
be handled. Some of the theories in section 7.4.1 will also help Ethereum
being able to handle such levels of transactions per second, thus eliminating
one of the huge advantages that established technologies like VISA have over
decentralised block chain technologies[16].

7.4.3 Waiting disrupts the flow

Another disadvantage of running applications on the block chain is, as men-
tioned in section 6.3.1, the time factor. Ethereum has a block time of 12
seconds, meaning this is the potential waiting time for an action to be car-
ried out. This is very unlike the norm of today, where processing and internet
speeds are at a level, where it is expected that any request is processed almost
immediately.

This will take some getting used to by regular users, as convenience is
very important in a world where consumers are used to one-click shopping22.
Therefore it might be an obstacle in regards to the universal acceptance of
the technology as an alternative to centralised services. For instance, in our
proof of concept, you will need to wait up to 12 seconds from “punching” your
punch card till you can get coffee, where as today it is an instant process.

And this is not even the whole disadvantage. If it was an equal wait-
ing time, for instance 12 seconds for everyone, then the flow of purchase
would continue, just with the added wait. However as it is, all transactions
made within a timespan of 12 seconds will be carried out simultaneously.
This means that if the customer power peaks at around 8 customers in 12
seconds23, 8 people will get the coffee machine opened at the same time,

22http://www.amazon.com/gp/help/customer/display.html?nodeId=468482 (vis-
ited on 08/05/2015)

23This number is purely fictional, and based on: if there is a queue; how many customers

44

http://www.amazon.com/gp/help/customer/display.html?nodeId=468482

which can become a bottleneck. This added disruptiveness in the flow of
process will be present in all application domains where block chain techno-
logy is implemented.

There are use cases for block chain technology, where the block time wait
is of little matter. For instance, if the technology was to be used as a per-
manent record of property rights, a twelve second wait for the transfer of
property such as land or a house is nothing. This will be covered in more
detail in section 8.2.

Ideally you would want to lower the block time even further. However it
has to be taken into account that the internet itself is not capable of instant
transfer of information. Whenever a miner successfully mines a block, it does
take some time before everybody on the network are informed of this. This
leads, eventually, to lowered security, as Buterin describes in a blog post
from July last year[18]. As this shows, there is a strict balance between the
security of the protocol and block propagation, which needs to be addressed
when lowering the block time. Until proper methods have been developed
and tested, going lower than 12 seconds is too risky. The improvements
already implemented are significantly better than the 10 minutes of Bitcoin,
almost without lowering security. Sure, 12 seconds will reduce realistic use
cases, but it is a good place to start. When improvements are introduced,
more use cases will come.

7.4.4 Fees: hidden or blatant

Costs is one of the more obvious drawbacks of decentralisation and block
chain technology. In the centralised world of today, someone pays for a
server to run their application, or the user downloads a program that then
runs on their computer. Most likely, the cost of running a server will somehow
be paid by consumers since companies need to have profit, and the costs of
running a server is an expense that needs to be covered. However this cost

could feasibly deduct a clip from their current physical punch card.

45

is often hidden from the user. On the block chain it is very blatant that
transactions and computational power come at a price.

This is definitely going to be one of the challenges of Web 3.0, as users
are not used to pay in this way for services online, and that fact might hinder
the spread of the technology. The fact that users will be constantly reminded
that an action has a fee, will certainly make some users choose centralised
solutions where the prices are more hidden. For instance, when looking at
the proof of concept presented earlier in this paper (see chapter 5), there will
be fees involved when buying a punch card, and every time it is punched.
These fees do not exist in the current transaction process. Another fitting
example is within the realm of tickets. It is easy to see the same logic that
is present in the punch card smart contract utilised for the sale of tickets
e.g. sports events (as mentioned in section 7.2). Here the customer would be
faced with very blatant fees upon purchase and utilisation of the ticket. In
a centralised system these fees would most likely be included in a “handling
fee” and possibly in the printing of the ticket, both not as visible as a dialogue
popping up on a screen.

Furthermore centralised services have an advantage: They can control
fees as they please. If it comes to outright competition with, for instance,
an Ethereum-based solution, the centralised actor can just remove the fees,
and take the slight reduction in profit. The decentralised will have to reduce
the price instead, but the blatant fees will still be present. Therefore a
decentralised solution will have to be very comprehensive in describing the
total price, including what fees there are and why.

Otherwise it is conceivable that users will see the first message about
fees and consequently use a centralised service instead. Because of the way
ÐApps are accessed (through an Ethereum client), there will most likely be
added a very clear message about the possible fees included in the action,
possibly like it is shown in the AlethZero client in figure 7.1.

46

Figure 7.1: The transaction dialogue of AlethZero as of 12/05/2015 when a
user tries to buy a punch card in the proof of concept presented earlier.

7.4.5 Fluctuating currencies

There are other things making it difficult to adapt a block chain technology
for common use. One of them is the ever changing value of the different
cryptocurrencies. Over the last two years the value of 1 BTC has decreased
from approximately $1150 to $20024. It is common that the value of 1 BTC
varies with more than $2 a day25, which makes it an extremely unstable cur-
rency. This means that people potentially can lose a big amount of money
in a very short period of time. When applying the technology in concrete
situations like presented in chapter 5 this is a problem. It would require the
price to be updated several times a day, or to implement a contract that
would do this automatically. This does, however, not remove the problem
completely. Even if the price in ether is kept up to date constantly, it would
still require that the coffee shop transferred this into fiat currency continu-
ously, otherwise they could potentially lose a significant amount of money.
In the same way, it would be required that the customer bought the ether

24https://goo.gl/sbi47u (visited 18/05/2015)
25http://www.coindesk.com/price/ (visited on 16/05/2015)

47

https://goo.gl/sbi47u
http://www.coindesk.com/price/

just before spending it. These are significant drawbacks in any system using
block chain technology.

Therefore some kind of assurance mechanism has to be developed in order
to ensure that the value of the consumers’ assets remain the same. In order
to do this some derivation of futures contracts could be used. Some initiatives
have already been made in regard to this26. As the name, futures contracts
imply, it is a contract between parties. Functionality like this is very easy to
implement in a smart contract using Ethereum.

7.4.6 Keeping everything safe

In the current punch card system at the coffee shop at ITU there is one way
to lose all your “currency”: to actually lose your punch card. This is similar
in the proof-of-concept implementation where losing the private key to your
address will cause the same situation, albeit in a much more serious way.
Such a loss will make your account unavailable for good – there is no way of
retaining it, as there is no central authority that keeps track of this.

In comparison, Denmark has a central authentication system today, called
NemID27. Here, your private key is stored on a central server, thus not trust-
free nor decentralised. A similar solution for your block chain address can
easily be developed, but with the same drawbacks: introducing trust.

7.4.7 Converting currencies

As mentioned in section 7.4.5, it is necessary to convert your fiat currency
to cryptocurrency for you to use a block chain based system. This can be a
hindrance, as it is another step in the purchase process that is not present
in the current system. If given the choice of either having to convert fiat
currency to ether to buy a punch card or put down a coin at the counter, the
latter is far the easier. Therefore, it will possibly be necessary for the coffee
shop to work with a currency exchange of some sort, when dealing with the
purchase process[3].

26http://opture.co (visited 03/03/2015)
27http://en.wikipedia.org/wiki/NemID (visited on 16/05/2015)

48

http://opture.co
http://en.wikipedia.org/wiki/NemID

Digital Currency Exchangers work in the same way as stock exchanges
or most other exchanges. It allows for people to sell and/or buy a given
cryptocurrency for conventional fiat currency or other cryptocurrencies28.
As the list in the Wikipedia article shows, very few of the most common
used exchanges are decentralised. This means that if hackers are able to
gain access to the centralised servers that run the exchange, situations like
the MtGox hacking might occur[37]. As the article states, the security was
very bad in this particular case. MtGox was considered a monopolist in the
bitcoin exchange market at the time being. The aftermath of them losing
$460 million worth of BTC, has however resulted in a vast amount of new
rising exchanges with better security[3].

The fact that people have actually lost huge amounts of money due to
exchanges being hacked, combined with the problems discussed above in re-
gards to securing your private key, might be one of the main reasons why
the layman will find it difficult to make the switch to using some kind of
cryptocurrency and block chain technology to handle day to day financial
matters.

If the coffee shop, or any other shop with a system set up on block chain
technology, does not want to rely on an exchange, there are alternatives. The
Ripple technology presented in section 8.3 also allows for seamless currency
conversions between fiat currency and cryptocurrency. This technology, how-
ever, has its own drawbacks that will be discussed later on.

28http://en.wikipedia.org/wiki/Digital_currency_exchanger (visited
15/05/2015)

49

http://en.wikipedia.org/wiki/Digital_currency_exchanger

8 | Reflections

In this chapter we will reflect upon our discussion and implementation and
discuss how the more generic block chain of Ethereum can be used in the do-
mains of digitalised voting; land rights; and currency conversion and transfer
in a broader perspective than cryptocurrencies. Finally, we will discuss what
this means for the banking sector as it is today.

8.1 Electronic Voting

There is one area where the implementation of computer technology has
yet to get widespread approval: elections. Parliamentary and presidential
elections are of such importance that the security needs are much greater than
in most other applications and have therefore haltered the implementation
of computer technology[30].

There are a lot of unsafe areas of electronic voting that have to be dealt
with before it can be implemented, and the fact that hackers continue to
break into government databases, like the CSC hacking of 2012[49], is not
helping convince the public.

Problematic areas within the process of voting exist when it is done on
an electronic network like the internet. Malicious software can be installed
on the computer of the voter to alter their vote before it gets recorded.

There is also the fact that the votes have to be stored. If they are stored on
a centralised server, it would be a playground for hackers. Some might have
political agendas, some economical and some might just find it challenging to
break in and alter an election result[30]. If the votes are solely stored on the
server, it will not be possible to check the validity of the result, and even if a

50

successful attack is discovered, the only way to go would be a time consuming
and costly re-election. There have been made measures to counter this in
the form of systems that print a physical ballot as a backup[7], but it is still
not optimal.

These storage insecurities could largely be nullified if a block chain ap-
proach was used. All transactions are timestamped so it cannot be changed,
except via a 51% attack[11]. It would be virtually impossible for a single man
or a network of activists to manipulate such a block chain. But perhaps a
state would have the resources to do so. Super powers like the United States
have the resources to tamper block chains through sheer computing power.
Thus, the block chain would not offer complete security, but it would be a
much harder task to influence an election. Furthermore it would be quite
evident that someone has been tampering with the network if it was done.

Now this only deals with the storage of the votes. There are still the unsolved
troubles of man in the middle attacks on the computer the voter uses. If we
keep the domain of this discussion to parliamentary elections in Denmark, it
would be a solution to still do voting the old fashioned way, where you get
your voting card in the mail and go to the nearest voting place on election
day. But instead of getting a long sheet of paper, you get something like a
QR code that you scan in the voting box in order to cast your vote. The QR
code could represent a sending address on the Ethereum block chain, and
your vote would then be sent to a smart contract that validates the address
and registers your vote. That transaction will then be on the block chain as
a permanent record of the anonymous vote. However some precautions must
be taken in order to ensure the security on the used computer.

The benefits of using a system like this are many – some more clear
than others. Of course the counting of votes are easily automated, greatly
reducing the work and time needed before a result is clear, while at the same
time removing human errors. Furthermore it will simplify the process of
voting. In addition this system also ensures the anonymity of the voters,
like today, due to the voter being given a random address. This is better

51

than for instance Estonia’s maligned system29. Here voters can only vote
by registering their ID card at the computer they are voting at, potentially
losing their anonymity.

To sum up, if block chain technology is used, some of the significant risks
of electronic elections can be dealt with, with relative ease. If a platform like
Ethereum is used, it will not be too difficult to create a smart contract that
handles the election process securely.

8.2 Digitalised Rights

One of the application areas where the block chain technology, in its decent-
ralised immutable nature, really comes to its right, is within the realm of
transferring property rights. Peruvian economist Hernando de Soto claimed
back in 2000 that roughly $9 trillion is locked up in “dead capiltal” in impov-
erished countries due to a lack of a trustworthy way of keeping track of land
rights[47]. This is an excellent example of the problem of trust in the fin-
ancial sector that one might not immediately think of. And it is one, where
the strength of the block chain really comes to show.

Block chain technology offers an elegant solution to this problem that has
its roots in the lack of a trustworthy authority, due to high corruption[20].
When no single entity can falsify a transaction, and that transaction repres-
ents the handling of ownership of a piece of land, it is not possible for anyone
to steal land by bribing officials.

It is easy to envision the overall structure of how such a system would
work. On Ethereum, an implementation would look somewhat like the proof
of concept presented in chapter 5. Of course, a deed to a piece of land is
much more complex than a punch card for coffee, and further documentation
might need to be stored, for instance on Swarm, the decentralised storage
unit of Ethereum that is yet to be developed30. A hash of the documents can
be stored in the transaction to verify that the documents remain unchanged.

Another way of using block chain technology to tackle the same problem
29https://estoniaevoting.org/ (visited on 16/05/2015)
30https://github.com/ethereum/cpp-ethereum/wiki/Swarm (visited on 16/05/2015)

52

https://estoniaevoting.org/
https://github.com/ethereum/cpp-ethereum/wiki/Swarm

is presented by Factom.org31. They utilise the Bitcoin block chain to store
a hash of the documentation and keep the actual files on what they call
the “Factom Data Layer”32. This solution is very similar to what could be
provided on Ethereum in the future, except it is more specifically targeted
this kind of transactions. This has both benefits and drawbacks. The more
generalised approach of Ethereum will most likely make sure that there are
more miners on all the data. Factom on the other hand will have a strong
block chain in Bitcoin for a small part of the data, whilst a more specialised
entity is responsible for the storage of the rest. Some of the features of
Ethereum are superfluous on a system like this. For instance the 12 second
block time, as mentioned in section 7.4.3, has little positive effects in a system
like this. There is also a difference in how the data is audited. Factom relies
on client side auditing, while Ethereum allows for auditing on the block chain
for the price of gas fees. It is not meant for this paper to take a standpoint
on which is best, but it goes to show that the same general technology, can
be utilised in different ways to solve the same problem.

8.3 Ripple

Ripple is not a block chain technology, but it still belongs in this paper as a
reference point and to serve as a possible use case for block chain technology.

8.3.1 What is Ripple?

Above, it is stated that Ripple is not a block chain technology, and that is
true, when we define that as a technology that via cryptographic hashing en-
sures security and trust-freeness in a network built up by many decentralised
nodes that all verify all transactions. Ripple uses a different strategy that
they call a consensus algorithm, which tries to reach a consensus between
nodes that are mostly Ripple’s own servers. The software has since 2013
been open source[14], but the clients are still using Ripple’s servers as per

31http://factom.org (visited on 12/05/2015)
32Showed in this video https://www.youtube.com/watch?v=uYQ5icxGvmA (visited on

12/05/2015)

53

http://factom.org
https://www.youtube.com/watch?v=uYQ5icxGvmA

default for verification. In this way, Ripple is a centralised service that there-
fore is not vulnerable to 51% attacks. However, the users put their trust in
Ripple Labs, who has in the past changed features of the network without
prior notification[14]. Up until the release of the source code, the network
was 100% reliant on Ripple Lab’s continued existence and dedication to the
project, though that has changed in the current environment, as the project
could theoretically be continued by the community.

The consensus algorithm is used to gain mathematical certainty for every
transaction (that 80% of the nodes verify it), and any transaction that are
not verified this way are discarded. Those that are verified are made into a
“last closed ledger”, which is then stored, sort of like the blocks on a block
chain. The very functionality of this consensus algorithm has been a concern
of some parties within the cryptocurrency world. Especially since a ledger
fork happened in the Stellar Network, which uses the same consensus protocol
as Ripple. This fork, which eventually resulted in loss of transactions, led to
concerns over the consensus protocol to a degree where the Stellar Network
went over to a centralised approach until a new white paper could be written
and implemented[34].

Ripple is meant as a way to transfer assets from one person to another
based on trust. While the network does have a built in cryptocurrency, this
is more meant as a way to do trust-free transactions where trust cannot be
obtained, and as a security measure, than an actual currency. The system
has a path finding algorithm that tries to find a path of peers connected
by trust between a sender and a recipient of a transaction. This way the
system manages trust instead of making it obsolete. This is of course in it
self a drawback, however, it does allow for the transfer of assets other than
cryptocurrencies, and for the seamless transfer of different currencies, in-
cluding cryptographic variants. Finally it needs to be mentioned that Ripple
relies on gateways to transfer money in and out of Ripple, and these are too
entities that the users need to trust[14, 27].

54

8.3.2 Ripple and block chain technology

Since the consensus algorithm of Ripple has been under scrutiny, it is feasible
to look into a similar implementation being made on block chain technology.
Some of Ripple’s selling points are that it consumes less electricity to run than
block chain technology does, and that it is not vulnerable to 51% attacks[14].
Both of these are true in some manner, though it can be argued that with
the release of the source code for the verification nodes, someone could gain
a majority and cause disruptions and forks like described earlier. If a similar
system was introduced in a block chain environment this security flaw would
not be present, while that of the 51% attack is something that is under
continuous research. The features of the Ripple solution, such as the path
finding algorithm, would have to be built into the protocol which would
undoubtedly be a task for a research team, but as seen with the generalised
approach of Ethereum, this should be possible.

8.4 The Opaque Banking Sector

So far in this paper, it has been shown how block chain technology can handle
payments, accounts and even currency conversion securely and automatically.
This leaves a problem for a large group of businesses: banks. If banks are
not to be made obsolete by the progression of technologies such as Ethereum,
Bitcoin and Ripple, they have to adapt.

In the finance world as we know it today, almost all relations are built
on trust. A trust that, in the light of events throughout the last ten years,
starting with the bankruptcy of Lehman Brothers, has only decreased among
consumers of the finance and banking world[2, 48].

According to a PwC report only 32% out of 2000 people across the UK
trust retail banks and only 15% trust investment banks[45]. These numbers
are alarmingly low and call for some severe action to be taken in order to
restore some acceptable level of trust among consumers and their banks. It is
only 10% of the asked consumers from the report whose trust in retail banks
have increased. For investment banks this number is even lower at only 6%.

55

Banks are naturally working on regaining as much of their consumers’ trust
as possible, as solutions are being suggested and tested throughout the global
financial markets[22]. Denning points out that the number one problem is
the lack of transparency:

“The root cause of the meltdown was opaqueness. After Leh-
man’s collapse, no one could understand any particular bank’s
risks from derivative trading and so no bank would deal with any
other bank or shadow-bank.”[22]

This ultimately lead to the decrease of the consumers’ trust in banks.
Edelman’s Global Trust Survey of 2014 shows that banks are the least trus-
ted of all industries at only 51% and technology the most trusted industry at
79%[24]. Once again the numbers are not in favour of the banks, and since
trust has always been the most paramount factor in banking, it seems some-
thing is being done in a very wrong way. Denning continues his argument
with:

“Because most of the big banks and many of the shadow banks
had been involved to an unknown degree in risky derivative trad-
ing, no one could tell whether any particular financial institution
might suddenly implode.”[22]

This enhances the fact that the lack of transparency is a large problem.
If not even banks are able to trust other banks, it is very difficult to justify
how consumers should be able to do so.

Denning has a series of suggestions on how to re-establish the trust. These
suggestions include changing the focus of the banking sector to continuously
add value to their costumers; making money as the result instead of the goal
of activities; being totally transparent about all its activities because it is
proud of how it conducts its business and more[22].

These suggestions all seem like viable solutions, but let us consider an en-
tirely different approach to solving these problems. Instead of basing banking
on trust, why not remove the factor that is the biggest problem in banking:
trust.

56

This can be done with a decentralised, trust-free, consensus based tech-
nology. A technology like this, is exactly what a block chain is, as described
in section 4.3.

Due to the way it works and the completely transparent ledger that comes
with it, block chain technology makes it possible to trace money and transac-
tions across big banks and shadow banks, avoiding unknown degrees of risky
derivative trading.

As we show in our proof of concept in chapter 5, it is far from difficult
to take a trust-based financial concept and apply some kind of block chain
technology to make it into a trust-free concept.

Further more, according to an article in The Economist, Head of Innov-
ation at VISA, Jim McCarthy, has said that if a network like VISA were to
be build today it would almost certainly be decentralised[23].

The above points in favour of the banks at least considering if they are
doing things the right way and to take a serious look at how they can use
block chain technology to strengthen their business and regain the trust of
their costumers. It is also a sign that the financial sector is beginning to open
its eyes and acknowledge some of the possibilities that block chain technology
offers.

8.4.1 Adaptation

In 2003, Bradley and Stewart, wrote about diffusion of online banking[8]. At
that time, online banking was a very new thing. When they wrote the paper
only few papers had investigated the diffusion of the online retail banking
sector. Bradley and Stewart state that “[at] a fundamental level, the industry
adoption level is governed by supply and demand side factors – that is, con-
sumer demand for online banking and the available supply of new technology,
particularly where it can reduce reliance of the branch network”[8].

Fast forward a little more than a decade, and the situation is arguably
the same. A new technology has arisen, giving the banks the opportunity of
getting rid of one of the huge issues that the banking sector is subject to,

57

as described in 8.4: trust. Banks are researching the block chain technology
and Fidor Bank has already adopted the Ripple (see 8.3) technology[36, 46].
This is indeed a step towards a decentralised banking sector or at the very
least a transparent banking sector. According to Roger’s bell curve from the
Technology Adoption Lifecycle model33, block chain technologies might be
considered to be in the “early adopters” phase.

In 2003, online banking was reducing reliance of the branch network[8].
Today, the block chain makes it possible to remove reliance on any kind of
centralised opaque trust-based network.

Large corporations have, to some extend, started accepting bitcoins as
payment for their services[21]. It should be understood that they are not
actually accepting bitcoins themselves, but have deals with bitcoin exchanges
that instantly converts the bitcoins to a fiat currency and transfers them
on to their bank accounts. It cannot be ignored that Bitcoin is the first
cryptocurrency being globally accepted. In the light of technologies like
Ethereum, it can be argued that Bitcoin might not be the last.

The Swiss investment bank, UBS, has, as one of the first huge banks,
taken a decision towards adapting block chain technology and are opening a
block chain research lab in London[42].

If history repeats itself the same way it did with the adoption of online
banking, chances are that we, in the next couple of years, will see big changes
in the way banks conduct their business.

33http://en.wikipedia.org/wiki/Technology_adoption_lifecycle (visited on
15/05/2015)

58

http://en.wikipedia.org/wiki/Technology_adoption_lifecycle

9 | Conclusion

The purpose of this paper has been to explore drawbacks and benefits of
using block chain technology in application areas where transparency and
trust-freeness advantageously can be used.

A working proof of concept of a digitalised punch card transaction system
was designed and implemented successfully on the Ethereum block chain in
order to evaluate this technology. This was done through extensive research
and accounting for the technology.

The analysis of the implementation proved how the features of Ethereum
and block chains in general can be utilised beneficially in economic systems.

The currently trust-based solution of the self-service system was auto-
matised through the use of smart contracts and consequently turned into a
trust-free system. Accordingly users can no longer misunderstand or misuse
the transaction system as the transaction rules are dictated by the block
chain. In addition the transparency of the block chain enables users to verify
that transactions are carried through as predicted. Furthermore due to hav-
ing the consensus checking of the entire block chain network behind it, the
system cannot be hacked or otherwise tampered with, making the system
very secure.

These are all features that are desirable in trust-based systems, why we
argue that block chain technology can be beneficially utilised in such.

The analysis also uncovered some limiting factors of the implementation
that were argued to be issues of the block chain technology in general. The
issue of block time especially is a limitation of our punch card system.

Issues of scalability, cost and block time were thus heavily discussed and

59

it was found that these aspects of block chain technology in general are not
quite on par with the solutions offered in centralised systems.

Fluctuation, transaction frequency and security were also discussed, but
these factors are all areas where suggestions to viable solutions were found.

Right now there is no good solution to the issue of the block chain be-
coming too big for ordinary users to carry a node on the network. There are
suggestions and theories on this subject, but they remain untested. There-
fore at this point in time, the bigger a block chain gets, the more centralised
the network becomes.

Similarly a lower block time is desirable, however it would make the
network unstable. Consequently the responsiveness of the applications suffer.

The issue of every action on the network essentially costing money, is
also an obstacle to overcome in order for users to accept this technology. We
argue that it will require a certain adoption time as users are used to fees
being more hidden.

These are all issues that need to be addressed in order for block chains to
become widespread in applications. Therefore innovation and research are
still necessary in this field.

Even though these hurdles exist it can be argued that block chain tech-
nology potentially can have significant impact on society in general.

We argue that block chain technology is one of the most promising tech-
nologies so far if you were to implement digital elections. There are however
aspects of security that are not solvable through block chains in this use case
that needs to be taken into account.

In terms of solving the problems of securing digital rights we argue that
the features of the block chain are very beneficial. The problem has its roots
in the lack of trustworthy authorities, why creating a trust-free system would
rectify this. In this specific use case it is hard to find obvious drawbacks to
using the block chain, as factors like block time and costs are of little relevance
here, why we recommend block chain technology to be utilised.

In the comparison of Ripple to block chain technology there are some
drawbacks of the method Ripple uses that has been publicly exposed. These

60

include centralisation and severe problems in consensus, both problems that
are inherently fixed with block chain technology. Ripple, however, provide a
solution to one of the earlier mentioned problems of block chain technology:
the secure conversion of fiat currency to cryptocurrency.

Discussions on how block chains can be used in financial areas made it
clear that the banking sector as we know it, has to seriously consider the
way it conduct its business if it wants to regain the trust of its consumers.
It is suggested that one possible way of doing so is by removing the element
of trust entirely by using block chain technology to build transparent and
trust-free systems.

If we were to continue researching this topic, it would be interesting to
actually implement our system in collaboration with the coffee shop in order
to get some actual feedback and results on the system. An analysis of the
data could determine how a trust-based system may benefit or suffer from
converting to a trust-free system

Furthermore it would be relevant to implement the suggested improve-
ments of the system in order to develop a complete DAO. This would mean
extending the system by automating more of the processes of the coffee shop
through extensive use of smart contracts communicating with each other.
It would be interesting to see which possible unforeseen problems this can
bring in regards to handling the challenges of the block chain discussed in
section 7.4.

In addition the implementation of a hardware solution on the actual cof-
fee dispensers would be a good way to investigate an actual case study of the
Internet of Things.

To conclude this thesis, block chain technology definitely has immense
potential due to its revolutionising features. The technology is already ap-
plicable in a vast amount of application domains. If the continued develop-
ment can overcome the challenges block chains face, we predict that they will
have a fundamental impact on the financial sector as well as society.

61

References

[1] Jeff Atwood. Understanding Model-View-Controller. 5th May 2008.
url: http : / / blog . codinghorror . com / understanding - model -
view-controller/ (visited on 15/05/2015).

[2] Vikas Bajaj. Financial Crisis Enters New Phase. http://www.nytimes.
com / 2008 / 09 / 18 / business / 18markets . html ? pagewanted = all.
17th Sept. 2008.

[3] Prableen Bajpai. A Look At The Most Popular Bitcoin Exchanges.
19th Nov. 2014. url: http://www.investopedia.com/articles/
investing/111914/look-most-popular-bitcoin-exchanges.asp
(visited on 15/05/2015).

[4] Bitcoin. Scalability. 10th Jan. 2015. url: https://en.bitcoin.it/
wiki/Scalability (visited on 13/05/2015).

[5] Bitcoin Hashrate Distribution. url: https : / / blockchain . info /
pools (visited on 16/05/2015).

[6] Block Chain Documentation. url: https://bitcoin.org/en/developer-
guide#block-chain (visited on 04/05/2015).

[7] Danny Bradbury. How Block Chain Technology Could Usher in Digital
Democracy. 16th June 2014. url: http://www.coindesk.com/block-
chain-technology-digital-democracy/ (visited on 12/05/2015).

[8] Laura Bradley and Kate Stewart. “The Diffusion of Online Banking”.
In: Journal of Marketing Management (2003).

62

http://blog.codinghorror.com/understanding-model-view-controller/
http://blog.codinghorror.com/understanding-model-view-controller/
http://www.nytimes.com/2008/09/18/business/18markets.html?pagewanted=all
http://www.nytimes.com/2008/09/18/business/18markets.html?pagewanted=all
http://www.investopedia.com/articles/investing/111914/look-most-popular-bitcoin-exchanges.asp
http://www.investopedia.com/articles/investing/111914/look-most-popular-bitcoin-exchanges.asp
https://en.bitcoin.it/wiki/Scalability
https://en.bitcoin.it/wiki/Scalability
https://blockchain.info/pools
https://blockchain.info/pools
https://bitcoin.org/en/developer-guide#block-chain
https://bitcoin.org/en/developer-guide#block-chain
http://www.coindesk.com/block-chain-technology-digital-democracy/
http://www.coindesk.com/block-chain-technology-digital-democracy/

[9] Paul Brody and Veena Pureswaran. Device democracy: Saving the fu-
ture of the Internet of Things. 2015. url: http://public.dhe.ibm.
com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
(visited on 15/05/2015).

[10] Vitalik Buterin. Ethereum Development Tutorial. 2nd July 2014. url:
https://github.com/ethereum/wiki/wiki/Ethereum-Development-
Tutorial (visited on 29/04/2015).

[11] Vitalik Buterin. Ethereum White Paper. 2013. url: https://github.
com/ethereum/wiki/wiki/White-Paper (visited on 16/05/2015).

[12] Vitalik Buterin. Hard Problems in Cryptocurrency. 21st Mar. 2014.
url: http://vitalik.ca/files/problems.pdf (visited on 18/05/2015).

[13] Vitalik Buterin. Notes on Scalable Blockchain Protocols (verson 0.3).
14th Apr. 2015. url: https://github.com/vbuterin/scalability_
paper/blob/master/scalability.pdf (visited on 06/05/2015).

[14] Vitalik Buterin. Ripple is Officially Open Source. 26th Sept. 2013. url:
https://bitcoinmagazine.com/7275/ripple- is- officially-
open-source/ (visited on 13/05/2015).

[15] Vitalik Buterin. Scalability, Part 1: Building on Top. 17th Sept. 2014.
url: https://blog.ethereum.org/2014/09/17/scalability-
part-1-building-top/ (visited on 29/04/2015).

[16] Vitalik Buterin. Scalability, Part 2: Hypercubes. 21st Oct. 2014. url:
https://blog.ethereum.org/2014/10/21/scalability-part-2-
hypercubes/ (visited on 29/04/2015).

[17] Vitalik Buterin. Scalability, Part 3: On Metacoin History and Multi-
chain. 13th Nov. 2014. url: https://blog.ethereum.org/2014/11/
13/scalability-part-3-metacoin-history-multichain/ (visited
on 29/04/2015).

[18] Vitalik Buterin. Toward a 12-second Block Time. 11th July 2014. url:
https://blog.ethereum.org/2014/07/11/toward-a-12-second-
block-time/ (visited on 08/05/2015).

63

http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial
https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://vitalik.ca/files/problems.pdf
https://github.com/vbuterin/scalability_paper/blob/master/scalability.pdf
https://github.com/vbuterin/scalability_paper/blob/master/scalability.pdf
https://bitcoinmagazine.com/7275/ripple-is-officially-open-source/
https://bitcoinmagazine.com/7275/ripple-is-officially-open-source/
https://blog.ethereum.org/2014/09/17/scalability-part-1-building-top/
https://blog.ethereum.org/2014/09/17/scalability-part-1-building-top/
https://blog.ethereum.org/2014/10/21/scalability-part-2-hypercubes/
https://blog.ethereum.org/2014/10/21/scalability-part-2-hypercubes/
https://blog.ethereum.org/2014/11/13/scalability-part-3-metacoin-history-multichain/
https://blog.ethereum.org/2014/11/13/scalability-part-3-metacoin-history-multichain/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/

[19] Vitalk Buterin. Visions, Part 1: The Value of Blockchain Technology.
13th Apr. 2015. url: https://blog.ethereum.org/2015/04/13/
visions-part-1-the-value-of-blockchain-technology/ (visited
on 12/05/2015).

[20] Corruption Perceptions Index 2014: Results. url: www.transparency.
org/cpi2014/results (visited on 10/05/2015).

[21] Jacob Davidson. No, Big Companies Aren’t Really Accepting Bitcoin.
9th Jan. 2015. url: http : / / time . com / money / 3658361 / dell -
microsoft-expedia-bitcoin/ (visited on 16/05/2015).

[22] Steve Denning. How Can Bankers Recover Our Trust? 6th Feb. 2015.
url: http://www.forbes.com/sites/stevedenning/2013/02/06/
will-we-ever-trust-bankers-again/ (visited on 12/05/2015).

[23] The Economist. Blockchain - The next big thing. 9th May 2015. url:
http://www.economist.com/news/special-report/21650295-or-
it-next-big-thing (visited on 09/05/2015).

[24] Edelman. 2014 Edelman Trust Barometer. 1st Jan. 2015. url: http:
/ / www . edelman . com / insights / intellectual - property / 2014 -
edelman-trust-barometer/about-trust/global-results/ (visited
on 12/05/2015).

[25] Ethereum Foundation. Ether Unit Converter. url: http://ether.
fund/tool/converter (visited on 06/05/2015).

[26] Ethereum Foundation. JavaScript API. 2014. url: https://github.
com/ethereum/wiki/wiki/JavaScript-API (visited on 12/05/2015).

[27] Gateways. url: https : / / ripple . com / knowledge _ categories /
gateways-2/ (visited on 13/05/2015).

[28] Robert Grahan. BitCoin is a public ledger. 30th May 2013. url: http:
//blog.erratasec.com/2013/05/bitcoin- is- public- ledger.
html#.VUfQX-SlilM (visited on 04/05/2015).

64

https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
www.transparency.org/cpi2014/results
www.transparency.org/cpi2014/results
http://time.com/money/3658361/dell-microsoft-expedia-bitcoin/
http://time.com/money/3658361/dell-microsoft-expedia-bitcoin/
http://www.forbes.com/sites/stevedenning/2013/02/06/will-we-ever-trust-bankers-again/
http://www.forbes.com/sites/stevedenning/2013/02/06/will-we-ever-trust-bankers-again/
http://www.economist.com/news/special-report/21650295-or-it-next-big-thing
http://www.economist.com/news/special-report/21650295-or-it-next-big-thing
http://www.edelman.com/insights/intellectual-property/2014-edelman-trust-barometer/about-trust/global-results/
http://www.edelman.com/insights/intellectual-property/2014-edelman-trust-barometer/about-trust/global-results/
http://www.edelman.com/insights/intellectual-property/2014-edelman-trust-barometer/about-trust/global-results/
http://ether.fund/tool/converter
http://ether.fund/tool/converter
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://ripple.com/knowledge_categories/gateways-2/
https://ripple.com/knowledge_categories/gateways-2/
http://blog.erratasec.com/2013/05/bitcoin-is-public-ledger.html#.VUfQX-SlilM
http://blog.erratasec.com/2013/05/bitcoin-is-public-ledger.html#.VUfQX-SlilM
http://blog.erratasec.com/2013/05/bitcoin-is-public-ledger.html#.VUfQX-SlilM

[29] Glen Greenwald and Ewen McAskill. NSA Prism program taps in to
user data of Apple, Google and others. 7th June 2013. url: http :
//www.theguardian.com/world/2013/jun/06/us-tech-giants-
nsa-data (visited on 07/05/2015).

[30] Doug Gross. Why can’t Americans vote online? 8th Nov. 2011. url:
http://edition.cnn.com/2011/11/08/tech/web/online-voting/
(visited on 12/05/2015).

[31] Vinay Gupta. The Ethereum Launch Process. 3rd Mar. 2015. url:
https://blog.ethereum.org/2015/03/03/ethereum- launch-
process/ (visited on 18/05/2015).

[32] Alan R. Hevner, Salvatore T. March and Jinsoo Park. Design Science
in Information Systems Research. 2004. url: http : / / citeseerx .
ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&
type=pdf (visited on 13/05/2015).

[33] Stan Higgins. IBM Reveals Proof of Concept for Blockchain-Powered
Internet of Things. 17th Jan. 2015. url: http://public.dhe.ibm.
com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
(visited on 15/05/2015).

[34] Stan Higgins. Stellar Network Fork Prompts Concerns Over Ripple
Consensus Protocol. 9th Dec. 2014. url: http : / / www . coindesk .
com/stability-questions-dog-ripple-protocol-stellar-fork/
(visited on 13/05/2015).

[35] Laura Hood.Google’s terms and conditions are less readable than Beowulf.
17th Oct. 2013. url: http : / / theconversation . com / googles -
terms-and-conditions-are-less-readable-than-beowulf-19215
(visited on 07/05/2015).

[36] Anna Irrera.UBS to Open Blockchain Research Lab in London. 2nd Apr.
2015. url: http://blogs.wsj.com/digits/2015/04/02/ubs-to-
open-blockchain-research-lab-in-london/ (visited on 15/05/2015).

65

http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://edition.cnn.com/2011/11/08/tech/web/online-voting/
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
http://www.coindesk.com/stability-questions-dog-ripple-protocol-stellar-fork/
http://www.coindesk.com/stability-questions-dog-ripple-protocol-stellar-fork/
http://theconversation.com/googles-terms-and-conditions-are-less-readable-than-beowulf-19215
http://theconversation.com/googles-terms-and-conditions-are-less-readable-than-beowulf-19215
http://blogs.wsj.com/digits/2015/04/02/ubs-to-open-blockchain-research-lab-in-london/
http://blogs.wsj.com/digits/2015/04/02/ubs-to-open-blockchain-research-lab-in-london/

[37] Robert McMillan. The Inside Story of Mt. Gox, Bitcoin’s $460 Million
Disaster. 3rd Mar. 2014. url: http://www.wired.com/2014/03/
bitcoin-exchange/ (visited on 15/05/2015).

[38] Brian Mikkelsen. Lov om videresalg af billetter til kultur- og idrætsar-
rangementer. 23rd May 2007. url: https://www.retsinformation.
dk/forms/R0710.aspx?id=12058 (visited on 07/05/2015).

[39] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
2008. url: https://bitcoin.org/bitcoin.pdf (visited on 14/05/2015).

[40] Dave Neal.Ghash.io promises not to break the Bitcoin market. 13th Jan.
2014. url: http://www.theinquirer.net/inquirer/news/2322534/
ghashio-promises-not-to-break-the-bitcoin-market (visited on
29/04/2015).

[41] Sanjay Panikkar et al. ADEPT: An IoT Practitioner Perspective. 7th Jan.
2015. url: http://www.scribd.com/doc/252917347/IBM-ADEPT-
Practictioner - Perspective - Pre - Publication - Draft - 7 - Jan -
2015 (visited on 15/05/2015).

[42] Yessi Bello Perez. UBS to Research Blockchain Technology in London
Lab. 2nd Apr. 2015. url: http : / / www . coindesk . com / ubs - to -
research - blockchain - technology - in - london - lab/ (visited on
15/05/2015).

[43] Andrew Poelstra. On Stake and Consensus. 22nd Mar. 2015. url:
https : / / download . wpsoftware . net / bitcoin / pos . pdf (visited
on 18/05/2015).

[44] Rob Price. Nasdaq is experimenting with the revolutionary technology
behind bitcoin. 11th May 2015. url: http://uk.businessinsider.
com/nasdaq-private-market-blockchain-bitcoin-experiment-
currency-ledger-2015-5?r=US (visited on 15/05/2015).

[45] PricewaterhouseCoopers. How financial services lost its mojo – and
how to regain it. 2nd Oct. 2014.

66

http://www.wired.com/2014/03/bitcoin-exchange/
http://www.wired.com/2014/03/bitcoin-exchange/
https://www.retsinformation.dk/forms/R0710.aspx?id=12058
https://www.retsinformation.dk/forms/R0710.aspx?id=12058
https://bitcoin.org/bitcoin.pdf
http://www.theinquirer.net/inquirer/news/2322534/ghashio-promises-not-to-break-the-bitcoin-market
http://www.theinquirer.net/inquirer/news/2322534/ghashio-promises-not-to-break-the-bitcoin-market
http://www.scribd.com/doc/252917347/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015
http://www.scribd.com/doc/252917347/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015
http://www.scribd.com/doc/252917347/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015
http://www.coindesk.com/ubs-to-research-blockchain-technology-in-london-lab/
http://www.coindesk.com/ubs-to-research-blockchain-technology-in-london-lab/
https://download.wpsoftware.net/bitcoin/pos.pdf
http://uk.businessinsider.com/nasdaq-private-market-blockchain-bitcoin-experiment-currency-ledger-2015-5?r=US
http://uk.businessinsider.com/nasdaq-private-market-blockchain-bitcoin-experiment-currency-ledger-2015-5?r=US
http://uk.businessinsider.com/nasdaq-private-market-blockchain-bitcoin-experiment-currency-ledger-2015-5?r=US

[46] Pete Rizzo. Fidor Becomes First Bank to Use Ripple Payment Pro-
tocol. 5th May 2014. url: http : / / www . coindesk . com / fidor -
becomes- first- bank- to- use- ripple- payment- protocol/ (vis-
ited on 15/05/2015).

[47] Hernando de Soto. “This Land Is Your Land: A Conversation with
Hernando de Soto”. In: World Policy Journal (2011), pp. 35–40. url:
http://www.worldpolicy.org/journal/summer2011/this-land-
is-your-land (visited on 07/05/2015).

[48] Investopedia Staff. Case Study: The Collapse of Lehman Brothers. url:
http://www.investopedia.com/articles/economics/09/lehman-
brothers-collapse.asp (visited on 08/05/2015).

[49] Ian Thomson. Danish court finds Pirate Bay cofounder guilty of hacking
CSC servers. 30th Oct. 2014. url: http://www.theregister.co.uk/
2014/10/30/danish_court_finds_pirate_bay_cofounder_guilty_
of_hacking_csc_servers/ (visited on 12/05/2015).

[50] Manny Trillo. Stress Test Prepares VisaNet for the Most Wonderful
Time of the Year. 10th Oct. 2013. url: http : / / www . visa . com /
blogarchives/us/2013/10/10/stress-test-prepares-visanet-
for-the-most-wonderful-time-of-the-year/index.html (visited
on 13/05/2015).

[51] Stephen Tual. The case for (re)decentralizing the Internet. 29th Apr.
2015. url: https://medium.com/ursium-blog/the-case-for-re-
decentralizing-the-internet-724013c0622 (visited on 16/05/2015).

[52] V. Vaishnavi and B. Kuechler. Design Science Research in Information
Systems. 20th Jan. 2004. url: http://www.desrist.org/design-
research-in-information-systems/ (visited on 13/05/2015).

[53] Gavin Wood. Ethereum Yellow Paper. 2014. url: http://gavwood.
com/paper.pdf.

67

http://www.coindesk.com/fidor-becomes-first-bank-to-use-ripple-payment-protocol/
http://www.coindesk.com/fidor-becomes-first-bank-to-use-ripple-payment-protocol/
http://www.worldpolicy.org/journal/summer2011/this-land-is-your-land
http://www.worldpolicy.org/journal/summer2011/this-land-is-your-land
http://www.investopedia.com/articles/economics/09/lehman-brothers-collapse.asp
http://www.investopedia.com/articles/economics/09/lehman-brothers-collapse.asp
http://www.theregister.co.uk/2014/10/30/danish_court_finds_pirate_bay_cofounder_guilty_of_hacking_csc_servers/
http://www.theregister.co.uk/2014/10/30/danish_court_finds_pirate_bay_cofounder_guilty_of_hacking_csc_servers/
http://www.theregister.co.uk/2014/10/30/danish_court_finds_pirate_bay_cofounder_guilty_of_hacking_csc_servers/
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://medium.com/ursium-blog/the-case-for-re-decentralizing-the-internet-724013c0622
https://medium.com/ursium-blog/the-case-for-re-decentralizing-the-internet-724013c0622
http://www.desrist.org/design-research-in-information-systems/
http://www.desrist.org/design-research-in-information-systems/
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

List of Terms

address A unique identifier that in block chain technology identifies a user
or other entity that can hold the related cryptocurrency. In Ethereum
addresses can be either EOAs or smart contracts. IV, 16, 22, 23, 25–28,
30, 31, 35, 37, 38, 42, 48, 51, 70

altcoins Alternatives to Bitcoin. Cryptocurrencies that are very similar to
Bitcoin. 8

API application programming interface. 21, 23

ASIC application-specific integrated circuit. 18

block difficulty The approximate number of tries it takes to hit an accept-
able proof of work. 19

block propagation The amount of miners working on the wrong data due
to them not being notified of the newest block yet. 45

cryptocurrency A currency that is based on cryptographic security. V, 1,
3, 7, 8, 11, 15, 36, 47–50, 54, 58, 61, 68, 69

cryptographic economic system An economic system that relies heavily
on cryptocurrencies. 5

DAO Decentralised Autonomous Organisation. 3, 7, 36, 61

distributed denial of service attack A way of denying access to a service
by bombarding it with mundane requests from a distributed network

68

of machines. The amount of requests will result in real requests being
pushed back in queue until they time out. 16

DSR Design Science Research. 4, 6

EOA externally owned account. 19, 68

ether The cryptocurrency used by Ethereum as both a currency and to fuel
the computation of cryptocurrencies. 16, 17, 22, 26, 30, 35, 41, 43, 47,
48, 70

EVM Ethereum Virtual Machine. 15–19, 70

fiat currency Fiat currency is a currency which derives its value from gov-
ernment regulation or law. 8, 47–49, 58, 61

futures contract “In finance, a futures contract (more colloquially, futures)
is a contract between two parties to buy or sell an asset for a price
agreed upon today (the futures price) with delivery and payment oc-
curring at a future point, the delivery date” http://en.wikipedia.
org/wiki/Futures_contract (visited on 16/05/2015). 48

getter A function that does nothing but return specific data. 31, 35

GUI graphical user interface. 23, 30, 40

IoT Internet of Things. 1, 10, 22, 61

ITU IT University of Copenhagen. 2, 38, 42, 48

man in the middle attack When malicious software is used to catch and
view or alter messages leaving a computer before they reach their des-
tination. 51

MVC Model-View-Controller. 36, 37

NSA National Security Agency. 9

69

http://en.wikipedia.org/wiki/Futures_contract
http://en.wikipedia.org/wiki/Futures_contract

opcode An opcode is an instruction that specifies the operation to be per-
formed. It is abbreviated from operation code. 19

punch card A physical card with a number of somehow removable parts
(punches or clips) that each has a value in some specific product. In
this case one punch equals one cup of coffee. IV, 5, 20–22, 24–26, 28–30,
32–36, 38–41, 44, 46, 48, 52, 59

setter A function that does nothing but change a specific field. 35

shadow bank A shadow bank is a non-bank financial intermediaries that
provide services similar to traditional commercial banks. 57

smart contract An Ethereum address that holds EVM code that can be
run through the use of transactions. 3, 5, 11, 12, 15–23, 25–32, 34–36,
38, 40, 41, 46, 48, 52, 59, 61, 68

smart property Property which ownership is controlled by a block chain
protocol. 8, 11, 21

state In terms of block chain technology, a state is the complete availability
of funds to the different addresses. This means that on the Ethereum
protocol, a state describes how much ether each address has. 18, 43,
70

substate When a block chain is divided into smaller pieces, the state is
divided as well. A substate is one of these divided pieces of the state.
42

testnet The block chain run by Ethereum prior to the release of the first
commercially usable block chain. The testnet is unstable and unfin-
ished. 29, 32

UTXO unspent transaction outputs. 42

Web 3.0 Term used by Ethereum to describe a decentralised internet. 9,
46

70

ÐApp decentralised application. 11, 23, 46

71

A | Implementation code

A.1 Non-modular implementation

A.1.1 Smart Contracts

Listing A.1: Smart contract code/contract.sol

1 contract ClipcardMachine {

2

3 struct Clipcard {

4 uint amountOfClips;

5 bytes32 name;

6 }

7

8 mapping (address => Clipcard) clipcards;

9

10 address issuer;

11 address machine;

12 uint price;

13 uint newClips;

14

15 function ClipcardMachine(address machineAddress) {

16 issuer = msg.sender;

17 machine = machineAddress;

18 price = 1000000000000000;

19 newClips = 10;

20 }

72

21

22 function deductClip(address beneficiary) {

23 clipcards[beneficiary].amountOfClips -= 1;

24 }

25

26 function addClip(address beneficiary) {

27 clipcards[beneficiary].amountOfClips += 1;

28 }

29

30 function buyClipcard(bytes32 name) returns (bool success) {

31

32 if(msg.value < price || name == ""){

33 return false;

34 }

35

36 Clipcard c = clipcards[msg.sender]; // assigns reference

37 c.name = name;

38 c.amountOfClips += newClips;

39

40 return true;

41 }

42

43 function useClip() returns (bool success){

44 if(clipcards[msg.sender].name == "" || clipcards[msg.sender

↪→].amountOfClips < 1) {

45 return false;

46 }

47 deductClip(msg.sender);

48

49 Machine mach = Machine(machine);

50 bool open = mach.open();

51 if(!open) {addClip(msg.sender);}

52

53 return true;

54 }

73

55

56 function setPrice(uint p) {

57 if(msg.sender == issuer && p >= 0)

58 price = p;

59 }

60

61 function setMachine(address a) {

62 if(msg.sender == issuer)

63 machine = a;

64 }

65

66 function setIssuer(address a) {

67 if(msg.sender == issuer)

68 issuer = a;

69 }

70

71 function emptyMachine(){

72 if(msg.sender == issuer)

73 issuer.send(this.balance);

74 }

75

76 function commitSuicide(){

77 if(msg.sender == issuer)

78 suicide(issuer);

79 }

80

81 function checkBalance() returns (uint balance) {

82 Clipcard c = clipcards[msg.sender];

83 balance = c.amountOfClips;

84 return balance;

85 }

86

87 function getName() returns (bytes32 name){

88 Clipcard c = clipcards[msg.sender];

89 name = c.name;

74

90 return name;

91 }

92 }

93

94 contract Machine {

95 /**~\label{line:modular_machine}~

96 * An artificial representation of a Machine that gets opened

↪→ when a punch is registered

97 *

98 */

99 address issuer;

100 address owner;

101 uint public openTill;

102 uint public cupsPoured;

103

104 // Empty constructor

105 function Machine(){

106 owner = msg.sender;

107 }

108

109 function setIssuer(address addr){

110 if(msg.sender == owner) {issuer = addr;}

111 }

112

113 function open() returns (bool result) {

114 if(msg.sender != issuer) {return false;}

115 if(cupsPoured == 10) {

116 cupsPoured = 0;

117 return false;

118 }

119 if(block.number > openTill) {openTill = block.number + 2;}

120 else {openTill += 2;}

121 return true;

122 }

123

75

124 function isOpen() returns (bool open) {

125 return (block.number < openTill);

126 }

127 }

A.1.2 HTML JavaScript Client

Listing A.2: Client source code from code/index.html

1 <html>

2 <head>

3 <meta charset="utf-8">

4 <title>Kløppekårt</title>

5 <link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/

↪→ bootstrap/3.2.0/css/bootstrap.min.css">

6 <link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/

↪→ bootstrap/3.2.0/js/bootstrap.min.js">

7 <style>

8 .form-control {

9 width: 100% !important;

10 text-align: center;

11 }

12 .btn {

13 width: 100% !important;

14 margin-bottom:40px;

15 }

16 .admin {

17 display: none;

18 }

19

20 .loading {

21 position: absolute;

22 display: none;

23 top:0px;

24 bottom: 0px;

76

25 left: 0px;

26 right: 0px;

27 background: url(1x1.png);

28 }

29 .loading img {

30 position: absolute;

31 margin-top: 200px;

32 width: 240px;

33 background: #FFF;

34 border-radius: 5px;

35 }

36 </style>

37 <script src="https://ajax.googleapis.com/ajax/libs/jquery

↪→ /2.1.3/jquery.min.js"></script>

38

39 <script type="text/javascript">

40

41 $(function(){

42 if (typeof web3 !== ’undefined’) {

43 var width = $(window).width();

44 margin = width/2;

45 $("#loading").css(’margin-left’, margin-120 + "px");

46

47 var contract = "0

↪→ xc2624f1daad05afc81a3b2c8808af93962f6a473";

48 var checkBalance = {

49 "to": contract,

50 "data": "0xc71daccb"

51 }

52 var checkName = {

53 "to": contract,

54 "data": "0x17d7de7c"

55 }

56 var ClipcardMachine = web3.eth.contract([{"constant":

↪→ false,"inputs":[],"name":"getName","outputs":[{"

77

↪→ name":"name","type":"bytes32"}],"type":"function

↪→ "},{"constant":false,"inputs":[],"name":"useClip

↪→ ","outputs":[{"name":"success","type":"bool"}],"

↪→ type":"function"},{"constant":false,"inputs":[{"

↪→ name":"name","type":"bytes32"}],"name":"

↪→ buyClipcard","outputs":[{"name":"success","type"

↪→ :"bool"}],"type":"function"},{"constant":false,"

↪→ inputs":[{"name":"beneficiary","type":"address"

↪→ }],"name":"addClip","outputs":[],"type":"

↪→ function"},{"constant":false,"inputs":[{"name":"

↪→ a","type":"address"}],"name":"setIssuer","

↪→ outputs":[],"type":"function"},{"constant":false

↪→ ,"inputs":[{"name":"p","type":"uint256"}],"name"

↪→ :"setPrice","outputs":[],"type":"function"},{"

↪→ constant":false,"inputs":[],"name":"emptyMachine

↪→ ","outputs":[],"type":"function"},{"constant":

↪→ false,"inputs":[],"name":"commitSuicide","

↪→ outputs":[],"type":"function"},{"constant":false

↪→ ,"inputs":[],"name":"checkBalance","outputs":[{"

↪→ name":"balance","type":"uint256"}],"type":"

↪→ function"},{"constant":false,"inputs":[{"name":"

↪→ beneficiary","type":"address"}],"name":"

↪→ deductClip","outputs":[],"type":"function"},{"

↪→ constant":false,"inputs":[{"name":"a","type":"

↪→ address"}],"name":"setMachine","outputs":[],"

↪→ type":"function"},{"inputs":[{"name":"

↪→ machineAddress","type":"address"}],"type":"

↪→ constructor"}]);

57

58 var machineInstance = ClipcardMachine.at(contract);

59

60 var balance = web3.eth.call(checkBalance);

61 var name = web3.eth.call(checkName);

62 name = web3.toAscii(name);

63 if(name) $("#cardname").val(name);

78

64 if(!name) {

65 name = "user";

66 $("#back").hide();

67 }

68 var issuer = web3.eth.getStorageAt(contract,1);

69 var machine = web3.eth.getStorageAt(contract,2);

70 var price = web3.eth.getStorageAt(contract,3);

71 var former_balance = balance;

72 $("#map").html(web3.toDecimal(balance));

73 $("#username").html(name);

74 $("#contract").html(contract);

75 $("#issuer").html(issuer);

76 $("#machine").html(machine);

77 $("#price").html(web3.fromWei(web3.toDecimal(price), "

↪→ finney") + " finney");

78 $("#newprice").val(web3.toDecimal(price));

79 if(web3.eth.coinbase === issuer) $(".admin").show();

80 /*if(web3.toDecimal(balance) <= 0) $("#useClip").prop(’

↪→ disabled’, true);

81 else $("#useClip").prop(’disabled’,

↪→ false);*/

82

83

84 /* var filter = web3.eth.filter(’latest’);

85 console.log("2");

86

87 filter.watch(function(error,result){

88 console.log("3");

89 $(".loading").hide();

90 var balance = web3.eth.call(checkBalance);

91 if(former_balance < balance) {

92 var name = web3.eth.call(checkName);

93 name = web3.toAscii(name);

94 $("#cardname").val(name);

95 $("#username").html(name);

79

96 former_balance = balance;

97 }

98 var issuer = web3.eth.getStorageAt(contract,1);

99 var machine = web3.eth.getStorageAt(contract,2);

100 var price = web3.eth.getStorageAt(contract,3);

101 $("#map").html(web3.toDecimal(balance));

102 $("#issuer").html(issuer);

103 $("#machine").html(machine);

104 $("#price").html(web3.fromWei(web3.toDecimal(price),

↪→ "finney") + " finney");

105 if(web3.toDecimal(balance) <= 0) $("#useClip").prop

↪→ (’disabled’, true);

106 else $("#useClip").prop(’disabled

↪→ ’, false);

107 });*/

108

109 // This is due to web3.eth.filter not working as

↪→ described in API

110

111

112 setInterval(function update(){

113 console.log("updated");

114 $(".loading").hide();

115 var balance = web3.eth.call(checkBalance);

116 if(former_balance < balance) {

117 var name = web3.eth.call(checkName);

118 name = web3.toAscii(name);

119 $("#cardname").val(name);

120 $("#username").html(name);

121 former_balance = balance;

122 }

123 var issuer = web3.eth.getStorageAt(contract,1);

124 var machine = web3.eth.getStorageAt(contract,2);

125 var price = web3.eth.getStorageAt(contract,3);

126 $("#map").html(web3.toDecimal(balance));

80

127 $("#issuer").html(issuer);

128 $("#machine").html(machine);

129 $("#price").html(web3.fromWei(web3.toDecimal(price),

↪→ "finney") + " finney");

130 $("#newprice").val(web3.toDecimal(price));

131 /*if(web3.toDecimal(balance) <= 0) $("#useClip").

↪→ prop(’disabled’, true);

132 else $("#useClip").prop(’disabled

↪→ ’, false);*/

133 }, 15000);

134

135

136

137 $("#buycard").on(’click’, function(){

138 if($("#cardname").val() !== ""){

139 machineInstance.buyClipcard.sendTransaction($("#

↪→ cardname").val(), {from: web3.eth.coinbase,

↪→ value: price, gas: 1000000});

140 $(".loading").show();

141 }

142 else

143 alert("Input a name");

144 });

145 $("#useClip").on(’click’, function(){

146 machineInstance.useClip({gas: 1000000});

147 $(".loading").show();

148 });

149 $("#suicide").on(’click’, function(){

150 machineInstance.commitSuicide({gas: 1000000});

151 $(".loading").show();

152 });

153 $("#empty").on(’click’, function(){

154 machineInstance.emptyMachine({gas: 1000000});

155 $(".loading").show();

156 });

81

157 $("#newissuerbtn").on(’click’, function(){

158 machineInstance.setIssuer.sendTransaction("0x" + $("

↪→ #newissuer").val(), {gas: 1000000});

159 $(".loading").show();

160 });

161 $("#newmachinebtn").on(’click’, function(){

162 machineInstance.setMachine.sendTransaction("0x" + $(

↪→ "#newmachine").val(), {gas: 1000000});

163 $(".loading").show();

164 });

165 $("#newpricebtn").on(’click’, function(){

166 machineInstance.setPrice.sendTransaction($("#

↪→ newprice").val(), {gas: 1000000});

167 $(".loading").show();

168 });

169 }

170 else {

171 $(".container").html("<h1>This is a DApp - please open

↪→ in compatible Ethereum client");

172 }

173 })

174

175

176 </script>

177

178 </head>

179

180 <body class="container">

181 <div class="header">

182 <h3>Kløppekårt</h3>

183 </div>

184 <div class="jumbotron">

185 <div class="row">

186 <div class="col-md-12">

187 <h4>Welcome back, <strong id="

82

↪→ username">!</h4>

188 <h5>My remaining clips: <strong id="map"></h5>

189 <h5>Issuer: <strong id="issuer"></h5>

190 <h5>Machine: <strong id="machine"></h5>

191 <h5>The Price: <strong id="price"></h5>

192 </div>

193 </div>

194 <div class="row">

195 <div class="col-md-6">

196 <button id="useClip" class="btn btn-default" type="submit

↪→ ">Punch your card</button>

197 </div>

198 </div>

199 <div class="row">

200 <div class="col-md-6">

201 <input type="text" id="cardname" placeholder="Input name

↪→ on clipcard" class="form-control" />

202 </div>

203 <div class="col-md-6">

204 <button id="buycard" class="btn btn-default" type="submit

↪→ ">Top up your punch card</button>

205 </div>

206 </div>

207 <div class="row admin">

208 <div class="col-md-12">

209 <h2>Administrative tools</h2>

210 <h5>This contract is at: <strong id="contract"><

↪→ /h5>

211 </div>

212 <div class="col-md-6">

213 <button id="suicide" class="btn btn-default" type="submit

↪→ ">Commit suicide</button>

214 </div>

215 <div class="col-md-6">

216 <button id="empty" class="btn btn-default" type="submit">

83

↪→ Empty machine</button>

217 </div>

218 <div class="col-md-1">

219 0x

220 </div>

221 <div class="col-md-5">

222 <input type="text" id="newissuer" placeholder="Address"

↪→ class="form-control" />

223 </div>

224 <div class="col-md-6">

225 <button id="newissuerbtn" class="btn btn-default" type="

↪→ submit">Change owner</button>

226 </div>

227 <div class="col-md-1">

228 0x

229 </div>

230 <div class="col-md-5">

231 <input type="text" id="newmachine" placeholder="Address"

↪→ class="form-control" />

232 </div>

233 <div class="col-md-6">

234 <button id="newmachinebtn" class="btn btn-default" type="

↪→ submit">Change machine</button>

235 </div>

236 <div class="col-md-6">

237 <input type="text" id="newprice" class="form-control" />

238 </div>

239 <div class="col-md-6">

240 <button id="newpricebtn" class="btn btn-default" type="

↪→ submit">Change price</button>

241 </div>

242 </div>

243 </div>

244

245

84

246 <div class="loading"></div>

247 </body>

248

249 </html>

A.2 Modular implementation

Listing A.3: Smart contracts for modular implementation

1 contract IsManaged {

2 /**

3 * Supercontract for all contracts that are managed by the

↪→ Manager

4 */

5 address manager;

6

7 // Set the manager for this contract

8 function setManager(address managerAddr) returns (bool result){

9 // Set a manager if none is set, or if the sender is the

↪→ current manager

10 if(manager != 0x0 && msg.sender != manager) {return false;}

11 // Set the manager address

12 manager = managerAddr;

13 }

14

15 // Kill the contract and send the funds to the manager

16 function commitSuicide(){

17 // Kill the contract and send funds to manager

18 if(msg.sender == manager) {suicide(manager);}

19 }

20 }

21

22 contract Issuer is IsManaged{

23 /**

85

24 * The Issuer is the main access point for this DApp.

25 * It utilises the AssetHolder, Settings, Machine and NameDb

↪→ directly and the PunchDb indirectly.

26 * It is the only contract that should have a GUI.

27 */

28 address owner;

29

30 // Constructor that sets the owner

31 function Issuer() {

32 owner = msg.sender;

33 }

34

35 // Function for buying a punch card. Accesses the AssetHolder

↪→ and the NameDb

36 function buyCard(bytes32 name) {

37 if(manager != 0x0){

38 // Get address of the assetHolder

39 address assetHolder = Manager(manager).getComponent("

↪→ assetHolder");

40

41 // Try to restock card

42 bool goon = AssetHolder(assetHolder).restockCard(msg.

↪→ sender);

43 // If restock failed, return

44 if(!goon) {return;}

45

46 // Get address of nameDb

47 address nameDb = Manager(manager).getComponent("nameDb");

48 // Set the name in the nameDb

49 NameDb(nameDb).setName(msg.sender, name);

50 }

51 }

52

53 // Function for punching a card. Accesses the AssetHolder and

↪→ the Machine

86

54 function punchCard() {

55 if(manager != 0x0) {

56 // Get address of assetHolder

57 address assetHolder = Manager(manager).getComponent("

↪→ assetHolder");

58

59 // Try to punch card

60 bool punched = AssetHolder(assetHolder).punchCard(msg.

↪→ sender);

61 // If punch failed, return

62 if(!punched) {return;}

63

64 // Get address of machine

65 address machine = Manager(manager).getComponent("machine"

↪→);

66 bool opened = Machine(machine).open();

67 if(!opened) {

68 bool unpunched = AssetHolder(assetHolder).unpunchCard(

↪→ msg.sender);

69 }

70 }

71 }

72

73 // Function for setting the price. Accesses Settings

74 function setPrice(uint value) {

75 // Make sure sender is owner

76 if(msg.sender != owner) {return;}

77 // Make sure theres a manager

78 if(manager != 0x0) {

79 // Get the settings

80 address settings = Manager(manager).getComponent("

↪→ settings");

81 Settings(settings).addSetting("price", value);

82 }

83 }

87

84

85 // Function for getting the price. Accesses Settings

86 function getPrice() returns (uint value) {

87 // Make sure theres a manager

88 if(manager != 0x0) {

89 // Get the settings

90 address settings = Manager(manager).getComponent("

↪→ settings");

91 return Settings(settings).getSetting("price");

92 }

93 return 0;

94 }

95

96 // Function for setting the add amount of punches. Accesses

↪→ Settings

97 function setAddAmount(uint value) {

98 // Make sure sender is owner

99 if(msg.sender != owner) {return;}

100 // Make sure theres a manager

101 if(manager != 0x0) {

102 // Get the settings

103 address settings = Manager(manager).getComponent("

↪→ settings");

104 Settings(settings).addSetting("addAmount", value);

105 }

106 }

107

108 // Function for getting the add amount of punches. Accesses

↪→ Settings

109 function getAddAmount() returns (uint value) {

110 // Make sure theres a manager

111 if(manager != 0x0) {

112 // Get the settings

113 address settings = Manager(manager).getComponent("

↪→ settings");

88

114 return Settings(settings).getSetting("addAmount");

115 }

116 return 0;

117 }

118

119 // Function for setting the punch amount of punches. Accesses

↪→ Settings

120 function setPunchAmount(uint value) {

121 // Make sure sender is owner

122 if(msg.sender != owner) {return;}

123 // Make sure theres a manager

124 if(manager != 0x0) {

125 // Get the settings

126 address settings = Manager(manager).getComponent("

↪→ settings");

127 Settings(settings).addSetting("punchAmount", value);

128 }

129 }

130

131 // Function for getting the punch amount of punches. Accesses

↪→ Settings

132 function getPunchAmount() returns (uint value) {

133 // Make sure theres a manager

134 if(manager != 0x0) {

135 // Get the settings

136 address settings = Manager(manager).getComponent("

↪→ settings");

137 return Settings(settings).getSetting("punchAmount");

138 }

139 return 0;

140 }

141

142 // Function for getting the punch balance. Accesses the

↪→ AssetHolder

143 function getBalance() returns (uint value) {

89

144 // Make sure there’s a manager

145 if(manager != 0x0) {

146 // Get the assetHolder

147 address assetHolder = Manager(manager).getComponent("

↪→ assetHolder");

148

149 return AssetHolder(assetHolder).getBalance(msg.sender);

150 }

151 return 0;

152 }

153

154 // Function for getting the name. Accesses the NameDb

155 function getName() returns (bytes32 name) {

156 // Make sure there’s a manager

157 if(manager != 0x0) {

158 // Get the assetHolder

159 address nameDb = Manager(manager).getComponent("nameDb");

160

161 return NameDb(nameDb).getName(msg.sender);

162 }

163 return "This issuer has no manager";

164 }

165

166 // Fucntion to set the owner

167 function setOwner(address addr){

168 if(msg.sender == owner) {owner = addr;}

169 }

170

171 // Function to empty the AssetHolder. Accesses the AssetHolder

172 function empty(){

173 if(msg.sender != owner) {return;}

174 // Make sure there’s a manager

175 if(manager != 0x0) {

176 // Get the address of the Asset Holder

177 address assetHolder = Manager(manager).getComponent("

90

↪→ assetHolder");

178

179 AssetHolder(assetHolder).empty(msg.sender);

180 }

181 }

182 }

183

184 contract Machine is IsManaged {

185 /**

186 * An artificial representation of a Machine that gets opened

↪→ when a punch is registered

187 *

188 */

189

190 uint public openTill;

191 uint public cupsPoured;

192

193 // Empty constructor

194 function Machine(){}

195

196 function open() returns (bool result) {

197 if(manager != 0x0) {

198 address issuer = Manager(manager).getComponent("issuer");

199 if(msg.sender != issuer) {return false;}

200 if(cupsPoured == 10) {

201 cupsPoured = 0;

202 return false;

203 }

204 if(block.number > openTill) {openTill = block.number +

↪→ 2;}

205 else {openTill += 2;}

206 return true;

207 }

208 }

209

91

210 function isOpen() returns (bool open) {

211 return (block.number < openTill);

212 }

213 }

214

215

216

217 contract AssetHolder is IsManaged {

218 /**

219 * The AssetHolder handles the logic related to the punch

↪→ cards and holds the value of the system

220 * Can only be modified by a specified Issuer

221 */

222 // Empty constructor

223 function AssetHolder(){}

224

225 // Restock a card

226 function restockCard(address addr) returns (bool result) {

227 if(manager != 0x0) {

228 // Check that the sender is the issuer

229 address issuer = Manager(manager).getComponent("issuer");

230 if(msg.sender != issuer) {return false;}

231

232 // Get the settings

233 address settings = Manager(manager).getComponent("

↪→ settings");

234 // Get the price

235 uint price = Settings(settings).getSetting("price");

236 // Get the add amount

237 uint amount = Settings(settings).getSetting("addAmount");

238 // Return if a setting is not set

239 if(price == 0 || amount == 0) {return false;}

240

241 // If the value of the message is too low, return the

↪→ value and fail

92

242 if(msg.value < price) {

243 addr.send(msg.value);

244 return false;

245 }

246

247 // Get the punch db

248 address punchDb = Manager(manager).getComponent("punchDb"

↪→);

249

250 // Add the amount to the db.

251 bool add = PunchDb(punchDb).add(addr, amount);

252 return add;

253 }

254 }

255

256 // Punch a card

257 function punchCard(address addr) returns (bool result) {

258 if(manager != 0x0) {

259 // Check that the sender is the issuer

260 address issuer = Manager(manager).getComponent("issuer");

261 if(msg.sender != issuer) {return false;}

262

263 // Get the settings

264 address settings = Manager(manager).getComponent("

↪→ settings");

265 // Get the punch amount

266 uint amount = Settings(settings).getSetting("punchAmount"

↪→);

267 // Return if the setting is not set

268 if(amount == 0) {return false;}

269

270 // Get the punch db

271 address punchDb = Manager(manager).getComponent("punchDb"

↪→);

272

93

273 // Punch the card

274 bool pun = PunchDb(punchDb).punch(addr, amount);

275 return pun;

276 }

277 }

278

279 // Unpunch a card

280 function unpunchCard(address addr) returns (bool result) {

281 if(manager != 0x0) {

282 // Check that the sender is the issuer

283 address issuer = Manager(manager).getComponent("issuer");

284 if(msg.sender != issuer) {return false;}

285

286 // Get the settings

287 address settings = Manager(manager).getComponent("

↪→ settings");

288 // Get the punch amount

289 uint amount = Settings(settings).getSetting("punchAmount"

↪→);

290 // Return if the setting is not set

291 if(amount == 0) {return false;}

292

293 // Get the punch db

294 address punchDb = Manager(manager).getComponent("punchDb"

↪→);

295

296 // Unpunch the card

297 bool add = PunchDb(punchDb).add(addr, amount);

298 return add;

299 }

300 }

301

302 // Get the balance

303 function getBalance(address addr) returns (uint balance) {

304 if(manager != 0x0) {

94

305 // Get the punch db

306 address punchDb = Manager(manager).getComponent("punchDb"

↪→);

307 uint bal = PunchDb(punchDb).getBalance(addr);

308 return bal;

309 }

310 return 0;

311 }

312

313 // Empty the Asset Holder

314 function empty(address addr){

315 if(manager != 0x0) {

316 // Check that the sender is the issuer

317 address issuer = Manager(manager).getComponent("issuer");

318 if(msg.sender != issuer) {return;}

319

320 addr.send(this.balance);

321 }

322 }

323 }

324

325 contract Settings is IsManaged {

326 /**

327 * Settings database

328 * Can only be modified by a specified Issuer

329 */

330 mapping (bytes32 => uint) settings;

331

332 function Settings() {}

333

334 function addSetting(bytes32 name, uint setting){

335 // Make sure there’s a manager

336 if(manager != 0x0){

337 // Get the issuer

338 address controller = Manager(manager).getComponent("

95

↪→ issuer");

339 // If the issuer sent the message, update the setting

340 if(msg.sender == controller) {settings[name] = setting;}

341 }

342 }

343

344 function getSetting(bytes32 name) returns (uint setting){

345 return settings[name];

346 }

347 }

348

349 contract PunchDb is IsManaged {

350 /**

351 * Database to handle punches on punch cards

352 * The PunchDb can only be modified from a specified

↪→ AssetHolder

353 */

354 mapping (address => uint) punchDb;

355

356 // Empty constructor

357 function PunchDb(){}

358

359 // Adds punches to a punch card

360 function add(address addr, uint newClips) returns (bool result)

↪→ {

361 // Make sure there’s a manager

362 if(manager != 0x0){

363 // Get the controller of the PunchDb

364 address controller = Manager(manager).getComponent("

↪→ assetHolder");

365 // If the controller sent the message, update the punch

↪→ card

366 if(msg.sender == controller) {

367 punchDb[addr] += newClips;

368 return true;

96

369 }

370 }

371 return false;

372 }

373

374 // Deduct punches from a punch card if possible

375 function punch(address addr, uint punchClips) returns (bool

↪→ result) {

376 // If the balance is too low, return

377 if(punchDb[addr] < punchClips) {return false;}

378 // Make sure there’s a manager

379 if(manager != 0x0){

380 // Get the controller of the PunchDb

381 address controller = Manager(manager).getComponent("

↪→ assetHolder");

382 // If the controller sent the message, update the punch

↪→ card

383 if(msg.sender == controller) {

384 punchDb[addr] -= punchClips;

385 return true;

386 }

387 }

388

389 return false;

390 }

391

392 // Gets the balance of a punch card

393 function getBalance(address addr) returns (uint balance) {

394 return punchDb[addr];

395 }

396 }

397

398 contract NameDb is IsManaged {

399 /**

400 * Database to handle names in the system

97

401 * The NameDb can only be modified by a specified Issuer

402 */

403 mapping (address => bytes32) nameDb;

404

405 // Empty constructor

406 function NameDb(){}

407

408 // Set a name in the database

409 function setName(address addr, bytes32 name){

410 // Make sure there’s a manager

411 if(manager != 0x0){

412 // Get the controller of the NameDb

413 address controller = Manager(manager).getComponent("

↪→ issuer");

414 // If the controller sent the message, update the name

415 if(msg.sender == controller) {nameDb[addr] = name;}

416 }

417 }

418

419 // Get a name from the database

420 function getName(address addr) returns (bytes32 name) {

421 // Make sure there’s a manager

422 if(manager != 0x0) {

423 // Get the controller og the NameDb

424 address controller = Manager(manager).getComponent("

↪→ issuer");

425 // If the controller sent the message, return the name

426 if(msg.sender == controller) {return nameDb[addr];}

427 }

428

429 return "";

430 }

431 }

432

433 contract Manager {

98

434 /**

435 * The manager contract is responsible for handling all the

↪→ components of the Punch Card Issuer system

436 */

437 address owner;

438 mapping (bytes32 => address) contracts;

439

440 // Constructor for the Manager

441 function Manager(){

442 owner = msg.sender;

443 }

444

445 // Adds a component to the system

446 function addComponent(bytes32 name, address comp) returns (bool

↪→ result){

447 // If sender is not owner, fail

448 if(msg.sender != owner) {return false;}

449

450 // Try to set this as manager in contract

451 IsManaged managed = IsManaged(comp);

452 bool sm = managed.setManager(address(this));

453

454 // If this fails, fail

455 if(!sm) {return false;}

456

457 // Store in mapping

458 contracts[name] = comp;

459 return true;

460 }

461

462 // Removes a component from the system

463 function removeComponent(bytes32 name) returns (bool result){

464 // If the component is not set, fail

465 if(contracts[name] == 0x0) {return false;}

466 // If the sender is not the owner, fail

99

467 if(msg.sender != owner) {return false;}

468

469 // Set the contract to nothing

470 contracts[name] = 0x0;

471 }

472

473 // Kills a component by making it commit suicide

474 function killComponent(bytes32 name) {

475 if(owner != msg.sender) {return;}

476 IsManaged(contracts[name]).commitSuicide();

477 owner.send(this.balance);

478 contracts[name] = 0x0;

479 }

480

481 // Get a component

482 function getComponent(bytes32 name) returns (address addr){

483 // Method to check that all parts have been set

484 return contracts[name];

485 }

486

487 // Change the owner of the Manager

488 function setOwner(address addr){

489 if(msg.sender == owner) {owner = addr;}

490 }

491

492 }

100

B | Test Results

In figure B.2b on page 102 the results of the black box testing of the proof-
of-concept system.

101

Action Case Expected Result

Buying Punch
Card

No funds No change No change

Just under price No change No change

Exactly enough funds No change(a) No change

Exactly enough +
fees

+ 10 clips + 10 clips

Plenty of funds + 10 clips + 10 clips

No name No change No change

With name + 10 clips + 10 clips

With other name + 10 clips +
name

+ 10 clips +
name

Punch card No clips No change No change

1 clip - 1 clip - 1 clip

Plenty of clips - 1 clip - 1 clip

Setting price Negative no. No change(b) 1.15792e+87

0 0 price 0 price

Positive no. Price = no. Price = no.

Setting ma-
chine

No address 0x0 address 0x0 address

An address Updated ad-
dress

Updated
address

Table B.1: Table of black box test results
(a) No change is expected as you are also responsible for covering transaction fees.

(b) This test fails as an unsigned integer is sent as parameter. These does not allow
negative numbers, and is thus changed to a very high positive number instead.

102

	Introduction
	Research question
	Contents of This Paper
	Cryptographic Economic Systems
	Why Ethereum?

	Methodology
	Design Science Research
	Phases of DSR
	Reflections on Research

	Background
	Bitcoin: the First DAO
	Block Chains in Finance
	Re-Decentralising the Internet
	From the Internet of Things to the Economy of Things
	Future Research

	Account for Technology
	Ethereum
	Vision
	Block Chain Technology
	Mining
	Consensus

	Technology of Ethereum
	Smart contracts
	Transactions
	Ether and gas
	Messages
	Mining ether
	Ethereum Virtual Machine (EVM)
	Block time

	Proof of Concept
	The Concept
	Current system
	The issue of trust

	Implementation
	Smart contract
	JavaScript client

	Tour of the System
	The welcome screen
	Purchasing a punch card
	Purchasing coffee

	Modular Implementation
	The contracts

	Analysis of Implementation
	Testing
	Solidity contract
	Black-box testing
	JavaScript client

	Trust and Security
	Limitations
	Block time
	Extendability
	Improvements

	Modular Implementation

	Discussion
	Why Decentralise?
	The Greater Picture
	Economic Systems
	Challenging the Block Chain
	The size factor
	Coping with stress
	Waiting disrupts the flow
	Fees: hidden or blatant
	Fluctuating currencies
	Keeping everything safe
	Converting currencies

	Reflections
	Electronic Voting
	Digitalised Rights
	Ripple
	What is Ripple?
	Ripple and block chain technology

	The Opaque Banking Sector
	Adaptation

	Conclusion
	References
	Terms and abbreviations
	Implementation code
	Non-modular implementation
	Smart Contracts
	HTML JavaScript Client

	Modular implementation

	Test Results

